• Title/Summary/Keyword: affected part

Search Result 1,534, Processing Time 0.028 seconds

Design of High Stiffness and Lightweight Body for Stiffness Distribution Ratio (강성 배분비를 고려한 고강성화 경량화 차체 설계)

  • Yang, Hee-Jong;Kim, Ki-Chang;Lim, Si-Hyung;Kim, Chan-Mook;Yim, Hong-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.901-906
    • /
    • 2007
  • Lightweight body due to the decrease of panel thickness and reinforcing member might cause low stiffness. On the other hand, high stiffness body requires an increase of mass. Front pillar section area has been decreased for increasing the driver's visual field. Global vehicle stiffness is affected by stiffness distribution ratio between upper part and lower part at a side body structure. This paper describes a process used to evaluate the stiffness distribution ratio based on strain energy. In addition, optimum design schemes are presented for high stiffness and lightweight body structure considering the investigated stiffness distribution ratio.

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an SI Engine : Part I-Without Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part I-와류가 없는 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.19-27
    • /
    • 2001
  • This paper is the first of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected SI engine by visualization for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been replaced with an air-ethanol mixture to utilize atomized fuel spray for the visualization purposes. This results have been compared with steady flow concentration measurement. For no swirl port, the axial penetration depends on the fuel injection timing. The fuel tends to remain in the upper region of the cylinder far from the spark plug and the distribution is not affected by the injection timing except 90 ATDC.

  • PDF

Study of the robot gripper cooling device for a high temperature material using peltier element (열전소자를 이용한 고온용 로봇 그리퍼 냉각장치에 관한 연구)

  • Shin, Gi-Su;Hong, Sung-Duk;Kim, Gun-Su;Kwon, Soon-Jae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • In the research, we developed a device for cooling the drive section of the gripper of a robot for handling the high temperature material. In this study, By using a Peltier element, the high-temperature material is not affected and driving cylinder is cooled to prevent damage due to high temperatures. Hot part of the Peltier element is towards the robot gripper. Cool part of the Peltier element is towards the driving cylinder. The heat sink portion is made to keep the cooling effect. As the performance result, cooling-test is taken, and their result is satisfy.

Modeling for Traction system of the Vehicle including Running Characteristics (주행특성을 고려한 차량 견인시스템 모델링)

  • Byun, Yeun-Sub;Kim, Young-Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1955-1961
    • /
    • 2007
  • In this paper, we propose the mathematical model for the vehicle system including running characteristics. The well defined model for a system is necessary to study and to enhance system performance. To model the dynamic properties of vehicle system, we have considered two fundamental parts. The first part is the motion equations for vehicle based on Newton's second law. The second part is the torque dynamics of the traction motor. These parts are affected by outer conditions such as adhesive coefficient, running resistance and gradient resistance. The each parts are presented by the numerical formula. To test the driving characteristics of the developed model, we performed the simulations by dynamic system simulation software, "SIMULINK" and the results are given for several conditions.

Dynamic behavior of pergola bridge decks of high-speed railways

  • Ugarte, Jokin;Carnerero, Antonio;Millanes, Francisco
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.91-103
    • /
    • 2017
  • This paper analyzes the dynamic behavior of the deck of pergola bridges affected by moving loads, specifically high-speed trains. Due to their characteristic advantages, pergola bridges have become a widely used structural typology on high-speed railways. In spite of such wide-spread use, there are few technical bibliographies published in this field. The first part of this paper develops a simple analytical methodology to study the complex dynamic behavior of these double dimensional structures. The second part compares the results obtained by the proposed formulae and the dynamic response obtained with different and gradually more complex FE models. The results obtained by the analytical model are in close agreement with those obtained by the FE models, demonstrating its potential application in the early design stages of this kind of structure.

Structural Safety Analysis According to the Shape of Door Impact Bar (도어 충격봉의 형상에 따른 구조 안전 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.21-25
    • /
    • 2012
  • In this study, the safest model can be selected by the simulation result of structural safety analysis according to the shape of impact bar affected at side door of automobile. The open sectional model of semicircle type has the lowest deformation and stress among 4 kinds of models. As the weight of this model has 30% in comparison with other models, it becomes most economical and stable. As the open sectional model of cap type the highest deformation and stress among 4 kinds of models, it becomes weakest. The closed models with circular and rectangular types has the stress far lower than cap type. The maximum deformation is shown at the center part of impact bar but the maximum stress occurs at the joint part between impact bar and frame.

Natural Convection in a Three Dimensional Inclined Enclosure (경사진 3차원 밀폐 공간 내에서의 자연대류)

  • Bae Dae Seok;Kwon Oh Boong;Kim Hyun Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.168-176
    • /
    • 2005
  • In an inclined enclosure with the upper part cooled and the lower part heated, quantitative data of the temperature and velocity are obtained simultaneously using thermo-sensitive liquid crystals. Experimental results are Presented for Pr=909. aspect ratios of 1/14. 2/14 and 3/14, angle of inclination, 0$\leq$$\theta$$\leq$45 to the horizontal line. The numerical results are obtained in the same conditions as experiments by the finite volume method and its results are compared with experimental results. It is found that the number of cell is decreased with increasing the angle of inclination. and a unicell is formed at nearby 6=30$^{circ}$ which is not affected by the aspect ratio.

A Study on the Press Drawing of a Sheet Metal Part with Holes on the Slope (경사면에 구멍이 있는 판재 부품의 프레스 드로잉에 관한 연구)

  • Lee, Ji-Ho;Jun, Cha-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.50-55
    • /
    • 2021
  • In this study, to create circular holes on an inclined conic face, we developed a novel process of vertical piercing on the plane before drawing, instead of applying an expensive cam-piercing method. The pierced holes are deformed during the drawing, and their shapes are affected by the size of the center hole. Using the Abaqus CAE program, the deformation tendency of the holes, according to the diameter of the center hole, was identified, and the diameter for securing the roundness of the side holes were determined through actual experiments. The developed process was successfully applied to mass production of the part, and a cost reduction is expected.

Super-resolution of compressed image by deep residual network

  • Jin, Yan;Park, Bumjun;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.59-61
    • /
    • 2018
  • Highly compressed images typically not only have low resolution, but are also affected by compression artifacts. Performing image super-resolution (SR) directly on highly compressed image would simultaneously magnify the blocking artifacts. In this paper, a SR method based on deep learning is proposed. The method is an end-to-end trainable deep convolutional neural network which performs SR on compressed images so as to reduce compression artifacts and improve image resolution. The proposed network is divided into compression artifacts removal (CAR) part and SR reconstruction part, and the network is trained by three-step training method to optimize training procedure. Experiments on JPEG compressed images with quality factors of 10, 20, and 30 demonstrate the effectiveness of the proposed method on commonly used test images and image sets.

  • PDF

Hydromechanical behavior of a natural swelling soil of Boumagueur region (east of Algeria)

  • Mebarki, Mehdi;Kareche, Toufik;Derfouf, Feth-Ellah Mounir;Taibi, Said;Abou-bekr, Nabil
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.69-79
    • /
    • 2019
  • This work presents an experimental study of the hydromechanical behavior of a natural swelling soil taken from Boumagueur region east of Algeria. Several pathological cases due to the soil shrinkage / swelling phenomenon were detected in this area. In a first part, the hydric behavior on drying-wetting paths was made, using the osmotic technics and saturated salts solutions to control suction. In The second part, using a new osmotic oedometer, the coupled behavior as a function of applied stresses and suction was investigated. It was shown that soil compressibility parameters was influenced by suction variations that an increase in suction is followed by a decrease in the virgin compression slope. On the other hand, the unloading slope of the oedometric curves was not obviously affected by the imposed suction. The decrease in suction strongly influences the apparent preconsolidation pressure, ie during swelling of the samples after wetting.