• 제목/요약/키워드: aerosol number concentration

검색결과 115건 처리시간 0.019초

선삭에서 절삭유 입자 발생 예측모델 (Prediction Model of Aerosol Generation for Cutting Fluid in Turning)

  • 박성호;오명석;고태조;김희술
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.69-76
    • /
    • 2004
  • This paper presents a prediction model for the aerosol generation of cutting fluid in turning process. Experimental studies have been carried out in order to identify the characteristics of aerosol generation in non-cutting and cutting cases. The indices of aerosol generation was mass concentration comparable to number generation, which is generally used fur environment criterion. Based on the experimental data, empirical model for predicting aerosol mass concentration of cutting fluid could be obtained by a statistical analysis. This relation shows good agreement with experimental data.

TSI Aerodynamic Particle Sizer 3321, Grimm Aerosol Spectrometer 1.109, HCT Particle Sensor 3030을 이용한 PM2.5 측정결과 비교 (Comparison Study of the TSI Aerodynamic Particle Sizer 3321, Grimm Aerosol Spectrometer 1.109 and HCT Particle Sensor 3030 for PM2.5 measurement)

  • 김두용;정혁;박재홍;현준호;황정호
    • 한국입자에어로졸학회지
    • /
    • 제8권1호
    • /
    • pp.9-15
    • /
    • 2012
  • Three different commercial particle counters were used to measure the PM2.5 particles in this study. An Aerosol Spectrometer (AS) 1.109 model of Grimm and a Particle Sensor (PS) 3030 model of HCT were compared with an Aerodynamic Particle Sizer (APS) 3321 model of TSI. The responses of these instruments were compared for four sizes ($1.0{\mu}m$, $1.5{\mu}m$, $2.0{\mu}m$ and $2.5{\mu}m$) of polystyrene latex (PSL) particles and indoor air particles of the office room. The mode diameter, particle size distribution and total particle number concentration of PSL particles were measured by each instrument. In the office room, the total particle number concentration was measured for 25 minutes. In results of particle size distribution and mode diameter, the APS 3321 (52 size-channels) was more accurate than the AS 1.109 (31 size-channels) and PS-3030 (10-szie channels) since the APS has more number of size-channels than the other instruments. However, AS 1.109 and PS-3030 provided similar results of total particle number concentration to those from the APS 3321. In results of office room test, there were no significant difference from each instrument similar to results of PSL test.

이차 에어러솔 생성 잠재력 평가를 위한 Potential Aerosol Mass (PAM) 챔버의 제주도 고산 대기분석 적용 (A Preliminary PAM Measurement of Ambient Air at Gosan, Jeju to Study the Secondary Aerosol Forming Potential)

  • 강은하;;김상우;윤순창;정무현;이미혜
    • 한국대기환경학회지
    • /
    • 제27권5호
    • /
    • pp.534-544
    • /
    • 2011
  • The secondary aerosol forming potential of ambient air was first measured with the Potential Aerosol Mass(PAM) chamber at Gosan supersite on Jeju island from October 22 to November 5, 2010. PAM chamber is a small flowthrough photo-oxidation chamber with extremely high OH and $O_3$ levels. The OH exposure in the PAM chamber was $(2{\pm}0.4){\times}10^{11}{\sim}(6{\pm}1.2){\times}10^{11}$ molecules $cm^{-3}$ s and was similar to 2 to 5 days of aging in the atmosphere. By periodically turning on and off UV lamps in the PAM chamber, ambient aerosol and newly formed aerosol (e.g. called as PAM aerosol) was alternately measured. Aerosol number and mass concentration in the range of 10~487 nm in diameter was measured by SMPS 3034. With UV lamps on, the nucleation mode particles smaller than 50 nm in diameters were formed. Their number concentration was greater than 105 $cm^{-3}$, leading to increase in aerosol mass by 0~8 ${\mu}gm^{-3}$. The variations of PAM and ambient aerosols were greatly dependent on characteristics of air masses such as precursor concentrations and degree of aging. This preliminary results suggests that PAM chamber is useful to assess the aerosol formation potential of air mass and its impact on the air quality. The further analysis of data with gaseous and particulate measurements will be done.

VACES을 이용한 대기 중 입자상물질의 농축기술 및 특성 연구 (Characteristics of Aerosol Particle Concentration by the Versatile Aerosol Concentration Enrichment System (VACES))

  • 박정호
    • 한국환경과학회지
    • /
    • 제21권11호
    • /
    • pp.1339-1348
    • /
    • 2012
  • The versatile aerosol concentration enrichment system (VACES) have proven useful for providing elevated levels of atmospheric aerosol to human and animal exposures. In this study, we describe a VACES and tests conducted to both optimize the enhancement factor (EF) and characterize how it depends on experiment conditions. Particle number concentrations were measured from upstream and downstream of the system by scanning mobility particle sizer (SMPS) with a long differential mobility analyzer (DMA) in combination with a condensation particle counter (CPC). SMPS was used for to determine VACES particle EF. Particle EF tends to increase for higher the saturator temperature ($T_{Sat}$) and lower the condenser temperature ($T_{Con}$). $T_{Con}$ higher than $0^{\circ}C$ and $T_{Sat}$ lower than $50^{\circ}C$ was the best to obtain the most increase in particle concentration. Correlation analysis of EF with factor variables of $T_{Sat}$ and $T_{Con}$ resulted in correlation 0.662 and 0.416, respectively. With all five predictor variables included in a multiple regression model, the EF had a liner correlation with $R^2=0.643$.

Real-time measurements and modeling of sodium combustion aerosol dynamics in test chamber to improve the evaluation of SFR containment aerosol behaviour

  • Usha Pujala;Amit Kumar;Subramanian Venkatesan;Sujatha Pavan Narayanam;Venkatraman Balasubramanian
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3483-3490
    • /
    • 2024
  • The initial size distribution and morphological parameters of sodium aerosols are critical in evaluating the accidental suspended aerosol behaviour in Sodium-cooled Fast Reactor (SFR) containment. Mass-based measurements were more familiar in characterizing the sodium aerosols. Real-time number size distribution measurements are carried out in this study. The sensitivity analysis of sodium aerosol effective density (ρe) in deriving the actual number size distributions from the measured Aerodynamic Particle Size Distributions (APSD) and predicting suspended aerosol dynamics is presented. Tests are conducted in a 1 m3 chamber at 47 ± 3% RH for different initial mass concentrations (M0) of 0.1, 1, and 2.9 g/m3. The initial APSDs measured just after the generation completions are observed to be polydisperse with the count median aerodynamic diameter (CMAD) < 1 ㎛. The literature reported ρe values of sodium aerosols, 2.27, 1.362, and 0.61 g/cm3 are used to derive mobility equivalent PSDs from APSD in each test. The real-time number concentration decay and size growth for four different PSDs are measured and compared with the estimate using nodal method-based code to ascertain the actual parameters. The validated parameters CMD = 0.66 ㎛, σg = 1.96, ρe = 1 g/cm3 and χ = 1 are used for improved estimation of sodium aerosol dynamics in Indian SFR containment with M0 = 4 g/m3 for severe accident scenarios.

황해상공에서의 항공기관측에 의한 황화합물 장거리이동 특징에 대한 조사 (A Survey on the Long-range Transport of Sulfur Compounds by Aircraft Measurement over the Yellow Sea in 1998)

  • 김병곤;안준영;김종호;박철진;한진석;나진균;최양일
    • 한국대기환경학회지
    • /
    • 제15권6호
    • /
    • pp.713-725
    • /
    • 1999
  • Air pollutants($SO_2$, NOx, $O_3$ and aerosol number) were measured using an aircraft to investigate the characteristical features of long-range transport of sulfur compounds over the Yellow Sea for the periods of 26~27 April and 7~10 November in 1998. The mean $SO_2$ concentrations of April 26th~27th and November 7th~10th flight were 0.6~1.8 ppb and 0.5~8.3 ppb, respectively, and the sulfur transport was largely limited to the atmospheric boundary layer. Especially, $SO_2$ increased up to 8.3 ppb altogether with the increase of particle number concentraton especially on November 8, 1998. In addition, $O_3$ was remarkably decreased against the increase of $SO_2$and particle number concentrations. This enhanced $SO_2$ concentration occurred in the low level westerlies in association with the anticyclonic flow over Southern China and the cyclonic circulation over Manchuria. Aerosol analyses at Taean site also showed that sulfate concentration increased 2~3 times higher than those of another sampling days, which could suggest possible interactions between aerosol particels and tropospheric ozone. A rigorous evaluation will be possible after the more intensive measurements and quantitative analyses with detailed chemistry model including the postulated heterogeneous mechanism.

  • PDF

TiO2 제조 실험실에서 나노입자의 배경농도 특징 (Characteristics of Background Nanoparticle Concentration in a TiO2 Manufacturing Laboratory)

  • 박승호;정재희;이승복;배귀남;지현석;조소혜
    • 한국입자에어로졸학회지
    • /
    • 제7권4호
    • /
    • pp.113-121
    • /
    • 2011
  • The aerosol nanoparticles are suspected to be exposed to workers in nanomaterial manufacturing facilities. However, the exposure assessment method has not been established. One of important issues is to characterize background level of nanoparticles in workplaces. In this study, intensive aerosol measurements were made at a $TiO_2$ manufacturing laboratory for five consecutive days in May of 2010. The $TiO_2$ nanoparticles were manufactured by the thermal-condensation process in a heated tube furnace. The particle number size distribution was measured using a scanning mobility particle sizer every 5 min, in order to detect particles ranging from 14.5 to 664 nm in diameter. Total particle number concentration shows a severe diurnal variation irrespective of manufacturing process, which was governed by nanoparticles smaller than 50 nm in diameter. During the background monitoring periods, significant peak concentrations were observed between 2 p.m. and 3 p.m. due to the infiltration of secondary aerosol particles formed by photochemical smog. Although significant increase in nanoparticle concentration was also observed during the manufacturing process twice among three times, these particle peak concentrations were lower than those observed during the background measurement. It is suggested that the investigation of background particle contamination is needed prior to conducting main exposure assessment in nanomaterial manufacturing workplaces or laboratories.

입자 균등성 확보를 위한 시험 챔버의 유동 시뮬레이션 및 이를 이용한 기상 부유균 저감 특성의 실험적 연구 (Flow Simulation of Chamber System to Obtain Particle Uniformity and Study on Bio-aerosol Reduction Test)

  • 박대훈;현준호;황정호
    • 한국입자에어로졸학회지
    • /
    • 제10권2호
    • /
    • pp.83-91
    • /
    • 2014
  • Since airborne bacteria have been known to aggravate indoor air quality, studies on reducing bacteria particles increase recently. In this study, a chamber(0.8m x 0.8m x 1.56m) system was built in order to simulate real conditions for reducing airborne bacteria, and evaluated by a simple aerosol reduction test. A method utilizing CFD(Computational Fluid Dynamics) simulation was used to detect the horizontal cross-sectional area which represents particle distribution in the chamber. Then an air-cleaner with HEPA filter and Carbon Fiber Ionizer was located on that area for aerosol reduction test. The CFD result found the area was located at 0.2m height from the bottom of the chamber, and the test showed aerosol reduction efficiencies using measurements of number concentration and CFU(colony forming unit) per each case. At the measurement of number concentration, the reduction efficiency of air-cleaner with filter and ionizer(Case 3) was about 90% after 4 minutes from the stop of the bacteria injection, and that with only filter(Case 2) was about 90% after 8 minutes from the beginning. Lastly, that without filter and ionizer(Case 1) was about 30% after 10 minutes. At the measurement of CFU, it shows similar results but it is related to viability of bio-aerosol.

부산 도심지에서 측정된 에어로졸 농도의 물리적 특성 (Physical Characteristics of Aerosol Concentrations Observed in an Urban Area, Busan)

  • 김연종;김철희
    • 한국환경과학회지
    • /
    • 제19권3호
    • /
    • pp.331-342
    • /
    • 2010
  • Aerosol physical properties have been measured at Pusan National University by using the 16-channel LPC(Laser Particle Counter), and particle characteristics have been examined for the period from Aug. 4 2007 to Dec. 30, 2008. Annual total average, seasonal average, and other averages of the meteorologically classified four categories such as Asian dust, precipitation, foggy, and clear days are respectively described here. Both annually and seasonally averaged number concentration show three peaks at the particle diameter of 0.3, 1.3, and $4{\mu}m$, respectively. However, the first peak for summer season tends to be shifted toward smaller size than other seasons, implying the strong fine particle generation. Meteorological condition shows strong contrast in aerosol concentrations. In Asian dust case, relatively lower number concentrations of fine particles (i.e., smaller than $0.5{\mu}m$) were predominant, while higher concentrations of coarse particles were found particularly for the size bigger than $0.5{\mu}m$. In precipitation day, number concentrations were decreased by approximately 30% due to the removal process of precipitation. Foggy day shows significantly higher concentrations for fine particles, implying the importance of the aerosol condensation process of micro-fine-particle growing to fine-particle. Finally the regressed particle size distribution function was fitted optimally with two log-normal distribution, and discussed the similarities and differences among four categorized cases of the Asian dust, precipitation, foggy, and clear days.

2003년 미국 텍사스 칼리지스테이션에서 관측된 초미세입자의 형성과 흡습 성장 특성 (Formation and Hygroscopic Growth Properties of Ultrafine Particles in College Station, Texas, in 2003)

  • 이용섭;도날드 콜린스
    • 한국환경과학회지
    • /
    • 제16권7호
    • /
    • pp.793-798
    • /
    • 2007
  • During May of 2003, smoke from fires in the Yucatan Peninsula was transported across the Gulf of Mexico and into Texas where it caused significant enhancement in measured aerosol concentrations and reduced visibility. During this event, the formation and growth of aerosol particles has been observed by a differential mobility analyzer (DMA) / tandem differential mobility analyzer (TDMA) system to characterize the size distribution and size-resolved hygroscopicity of the aerosol. The most number concentration is by the particles smaller than 100 nm, but the integrated number concentrations for over 100 nm increased due to the aerosol growth. Hygroscopic growth factor increase from 1.2 to 1.4 for 25, 50, and 100 nm particles during the nucleating period. This distribution and the aerosol properties derived from the TDMA data were used to calculate the growth rate. Particle growth rates were in the range 1-12 nm/hr.