Browse > Article
http://dx.doi.org/10.5572/KOSAE.2011.27.5.534

A Preliminary PAM Measurement of Ambient Air at Gosan, Jeju to Study the Secondary Aerosol Forming Potential  

Kang, Eun-Ha (Department of Earth and Environmental Sciences, Korea University)
Brune, William H. (Department of Meteorology, The Pennsylvania State University)
Kim, Sang-Woo (School of Earth and Environmental Sciences, Seoul National University)
Yoon, Soon-Chang (School of Earth and Environmental Sciences, Seoul National University)
Jung, Mu-Hyun (Department of Earth and Environmental Sciences, Korea University)
Lee, Mee-Hye (Department of Earth and Environmental Sciences, Korea University)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.27, no.5, 2011 , pp. 534-544 More about this Journal
Abstract
The secondary aerosol forming potential of ambient air was first measured with the Potential Aerosol Mass(PAM) chamber at Gosan supersite on Jeju island from October 22 to November 5, 2010. PAM chamber is a small flowthrough photo-oxidation chamber with extremely high OH and $O_3$ levels. The OH exposure in the PAM chamber was $(2{\pm}0.4){\times}10^{11}{\sim}(6{\pm}1.2){\times}10^{11}$ molecules $cm^{-3}$ s and was similar to 2 to 5 days of aging in the atmosphere. By periodically turning on and off UV lamps in the PAM chamber, ambient aerosol and newly formed aerosol (e.g. called as PAM aerosol) was alternately measured. Aerosol number and mass concentration in the range of 10~487 nm in diameter was measured by SMPS 3034. With UV lamps on, the nucleation mode particles smaller than 50 nm in diameters were formed. Their number concentration was greater than 105 $cm^{-3}$, leading to increase in aerosol mass by 0~8 ${\mu}gm^{-3}$. The variations of PAM and ambient aerosols were greatly dependent on characteristics of air masses such as precursor concentrations and degree of aging. This preliminary results suggests that PAM chamber is useful to assess the aerosol formation potential of air mass and its impact on the air quality. The further analysis of data with gaseous and particulate measurements will be done.
Keywords
Potential Aerosol Mass (PAM) chamber; Secondary aerosol; Photo-oxidation; Aerosol forming potential; Ambient air;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Volkamer, R., P.J. Ziemann, and M.J. Molina (2009) Secondary Organic Aerosol Formation from Acetylene ($C_2H_2$): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase, Atmos. Chem. Phys., 9, 1907-1928.
2 Matsunaga, A. and P.J. Ziemann (2010) Gas-wall partitioning of organic compounds in a Teflon film chamber and potential effects on reaction product and aerosol yield measurements, Aerosol. Sci. Tech., 44(10), 881-892.   DOI
3 Presto, A.A., M.A. Miracolo, J.H. Kroll, D.R. Worsnop, A.L. Robinson, and N.M. Donahue (2009) Intermediatevolatility organic compounds: a potential source of ambient oxidized organic aerosol, Environ. Sci. Technol., 43(13), 4744-4749.   DOI   ScienceOn
4 Ren, X., H. Harder, M. Martinez, R.L. Lesher, A. Oliger, T. Shirley, J. Adams, J.B. Simpas, and W.H. Brune (2003) HOx concentrations and OH reactivity observations on New York City during PMTACS-NY2001, Atmos. Enrivon., 37, 3627-3637.   DOI   ScienceOn
5 Robinson, A.L., N.M. Donahue, M.K. Shrivastava, E.A. Weitkamp, A.M. Sage, A.P. Grieshop, T.E. Lane, J.R. Pierce, and S.N. Pandis (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging, Science, 315, 1259-262.   DOI   ScienceOn
6 Seinfeld, J.H. and S.N. Pandis (2006) Atmospheric chemistry and physics from air pollution to climate change, 2nd edition, John Wiley & Sons Inc. Hoboken, New Jersey, USA, 55-60.
7 Volkamer, R., F.S. Martini, L.T. Molina, D. Salcedo, J.L. Jimenez, and M.J. Molina (2007) A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol, Geophys. Res. Lett., 34, L19807, doi: 10.1029/2007GL030752.   DOI   ScienceOn
8 Volkamer, R., J.L. Jimenez, F.S. Martini, K. Dzepina, Q. Zhang, D. Salcedo, L.T. Molina, D.R. Worsnop, and M.J. Molina (2006) Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected, Geophys. Res. Lett., 33, L17811, doi:10.1029/2006GL026899.   DOI   ScienceOn
9 Kang, E., D.W. Toohey, and W.H. Brune (2011) Dependence of SOA oxidation on organic aerosol mass concentration and OH exposure: Experimental PAM chamber studies, Atmos. Chem. Phys., 11, 1837-1851.   DOI
10 Kang, E., M.J. Root, D.W. Toohey, and W.H. Brune (2007) Introducing the concept of Potential Aerosol Mass (PAM), Atmos. Chem. Phys., 7, 5727-5744.   DOI
11 Kroll, J.H. and J.H. Seinfeld (2008) Chemistry of secondary organic aerosol: Formation and evolution of lowvolatility organics in the atmosphere, Atmos. Environ., 42, 3593-3624.   DOI   ScienceOn
12 Lee, A., A.H. Goldstein, J.H. Kroll, N.L. Ng, V. Varutbangkul, R.C. Flagan, and J.H. Seinfeld (2006) Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes, J. Geophys. Res., 111, D17305,doi:10.1029/2006JD007050.   DOI
13 Lee, M., M. Song, K.J. Moon, J.S. Han, G. Lee, and K. Kim (2007) Origins and chemical characteristics of fine aerosol during the northeastern Asia regional experiment (Atmospheric Brown Cloud-East Asia Regional Experiment 2005), Journal of Geophysical Research, 112, D22S29, doi:10.1029/2006JD008210.   DOI
14 Mao, J., X. Ren, W.H. Brune, J.R. Olson, J.H. Crawford, A. Fried, L.G. Huey, R.C. Cohen, B. Heikes, H.B. Singh, D.R. Blake, G.W. Sachse, G.S. Diskin, S.R. Hall, and R.E. Shetter (2009) Airborne measurement of OH reactivity during INTEX-B, Atmos. Chem. Phys., 9, 163-173, doi:10.5194/acp-9-163-2009.   DOI
15 George, I.J. and J.P.D. Abbatt (2010) Chemical evolution of secondary organic aerosol from OH-initiated heterogeneous oxidation, Atmos. Chem. Phys., 10, 5551-5563, doi:10.5194/acp-10-5551-2010.   DOI
16 Hallquist, M., J.C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N.M. Donahue, C. George, A.H. Goldstein, J.F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M.E. Jenkin, J.L. Jimenez, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, Th.F. Mentel, A. Monod, A.S.H. Pévôt, J.H. Seinfeld, J.D. Surratt, R. Szmigielski, and J. Wildt (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155-5236, doi:10.5194/acp-9-5155-2009.   DOI
17 Jimenez, J.L., M.R. Canagaratna, N.M. Donahue, A.S.H. Prèvôt, Q. Zhang, J.H. Kroll, P.F. DeCarlo, J.D. Allan, H. Coe, N.L. Ng, A.C. Aiken, K.S. Docherty, I.M. Ulbrich, A.P. Grieshop, A.L. Robinson, J. Duplissy, J.D. Smith, K.R. Wilson, V.A. Lanz, C. Hueglin, Y.L. Sun, J. Tian, A. Laaksonen, R. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J.M. Tomlinson, D.R. Collins, M.J. Cubison, E.J. Dunlea, J.A. Huffman, T.B. Onasch, M.R. Alfarra, P.I. Williams, K. Bower, K. Kondo, J. Schneider, F. Frewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J.Y. Sun, Y.M. Zhang, K. Dzepina, J.R. Kimmel, D. Sueper, J.T. Jayne, S.C. Herndon, A.M. Trimborn, L.R. Williams, E.C. Wood, A.M. Middlebrook, C.E. Kolb, U. Baltensperger, and D.R. Worsnop (2009) Evolution of organic aerosols in the atmosphere, Science, 326, 1525-1529.   DOI   ScienceOn
18 Carlton, A.G., C. Wiedinmyer, and J.H. Kroll (2009) A review of Secondary Organic Aerosol (SOA) formation from isoprene, Atmos. Chem. Phys., 9, 4987-5005.   DOI
19 Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, L. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland (2007) Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007: Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Edited by Solomon, S., D. Qin, M. Manning, Z. Chen, M.K.B. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, Cambridge University Press, Cambridge, 158-170.
20 Gao, S., M. Keywood, V. Varutbangkul, R. Bahreini, R.C. Flagan, and J.H. Seinfeld (2004) Low-molecularweight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and alpha-pinene, J. Phys. Chem., A108, 10147-10164.   DOI   ScienceOn
21 Baltensperger, U., J. Dommen, M.R. Alfarra, J. Duplissy, K. Gaeggeler, A. Metzger, M.C. Facchini, S. Decesari, E. Finessi, C. Reinnig, M. Schott, J. Warnke, T. Hoffmann, B. Klatzer, H. Puxbaum, M. Geiser, M. Savi, D. Lang, M. Kalberer, and T. Geiser (2008) Combined determination of the chemical composition and of health effects of secondary organic aerosols: the POLYSOA project, J. Aerosol Med. Pulm. Drug. Deliv., 21(1), 145-154.   DOI   ScienceOn
22 Alfarra, M.R., D. Paulsen, M. Gysel, A.A. Garforth, J. Dommen, A.S.H. Prevot, D.R. Worsnop, U. Baltensperger, and H. Coe (2006) A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber, Atmos. Chem. Phys., 6, 5279-5293, doi:10.5194/acp-6-5279-2006.   DOI