• 제목/요약/키워드: aeroelastic modeling

검색결과 37건 처리시간 0.024초

구조 불확도를 고려한 강건 공탄성 해석 (Robust Aeroelastic Analysis considering a Structural Uncertainty)

  • 배재성;황재혁;고승희;변관화
    • 한국항공우주학회지
    • /
    • 제43권9호
    • /
    • pp.781-786
    • /
    • 2015
  • 공력탄성학적 안정성 해석에 있어서 모델링 오차 및 구조 불확도에 의해 결과의 정확도는 떨어질 수 있다. 따라서, 이러한 모델링 오차 및 구조 불확도를 고려한 공탄성 안정성 경계를 예측할 필요가 있다. 이러한 모델링 오차 및 불확도를 고려한 공탄성 안정성 예측을 위해 강건 공탄성 해석이 제안되었다. 본 연구에서는 ${\mu}$ 해석기법과 모달접근법과 MSA를 사용한 조종날개의 공탄성 모델로 부터 강건 공탄성 모델링과 해석을 수행하였다. 강건 공탄성 해석 프로그램이 개발되었고, 기존의 공탄성 해석 결과와 비교/검증하였다.

Acrosswind aeroelastic response of square tall buildings: a semi-analytical approach based of wind tunnel tests on rigid models

  • Venanzi, I.;Materazzi, A.L.
    • Wind and Structures
    • /
    • 제15권6호
    • /
    • pp.495-508
    • /
    • 2012
  • The present paper is focused on the prediction of the acrosswind aeroelastic response of square tall buildings. In particular, a semi-analytical procedure is proposed based on the assumption that square tall buildings, for reduced velocities corresponding to operational conditions, do not experience vortex shedding resonance or galloping and fall in the range of positive aerodynamic damping. Under these conditions, aeroelastic wind tunnel tests can be unnecessary and the response can be correctly evaluated using wind tunnel tests on rigid models and analytical modeling of the aerodynamic damping. The proposed procedure consists of two phases. First, simultaneous measurements of the pressure time histories are carried out in the wind tunnel on rigid models, in order to obtain the aerodynamic forces. Then, aeroelastic forces are analytically evaluated and the structural response is computed through direct integration of the equations of motion considering the contribution of both the aerodynamic and aeroelastic forces. The procedure, which gives a conservative estimate of the aeroelastic response, has the advantage that aeroelastic tests are avoided, at least in the preliminary design phase.

풍력발전기 로터 블레이드의 등가 구조모델 수립 (Equivalent Structural Modeling of Wind Turbine Rotor Blade)

  • 박영근;황재혁;김석우;장문석;배재성
    • 한국항공운항학회지
    • /
    • 제14권4호
    • /
    • pp.11-16
    • /
    • 2006
  • The wind turbine rotor blade is faced with various aeroelastic problem as rotor blades become bigger and lighter by the use the composite material. The aeroelastic analysis of a wind turbine rotor blade requires its aerodynamic model and structural model. For effective aeroelastic analysis, it is required the simple and effective structural model of the blade. In the present study, we introduce the effective equivalent structural modeling of the blade for aeroelastic analysis. The equivalent beam model of the composite blade based on its 3D finite element model is established. The free vibration analysis shows that the equivalent beam model of the blade is equivalent to its 3D finite element model.

  • PDF

구조 모델링 특성에 따른 복합재료 무힌지 로터의 공력 탄성학적 안정성 연구 (Assessment of Structural Modeling Refinements on Aeroelastic Stability of Composite Hingeless Rotor Blades)

  • 박일주;정성남;김창주
    • 한국항공우주학회지
    • /
    • 제36권2호
    • /
    • pp.163-170
    • /
    • 2008
  • 혼합 보 이론과 적정변형 보 이론에 입각한 공탄성 해석 시스템을 결합하여 유연면을 갖는 복합재료 무힌지 로터에 대한 정지 및 전진 비행시의 공탄성 해석을 수행하였다. 블레이드에 작용하는 공기력은 Leishman-Beddoes의 비정상 공력 모델을 이용하여 구했다. 인장, 회전면 내외의 굽힘, 그리고 비틀림이 상호 연계된 블레이드에 대한 운동방정식은 Hamilton의 원리에 입각하여 유도하였다. 헬리콥터 블레이드의 공탄성 해석에 주요한 요소들인 단면 벽의 두께, 탄성연계, 그리고 구성방정식에 대한 적합한 가정과 같은 주요 구조 모델링 문제들에 대한 효과들을 고찰하였다. 이러한 요소들은 블레이드 단면의 복합재료 적층 구조에 민감하게 반응하며, 블레이드 안정성에도 적지 않은 영향을 나타냄을 보였다.

불확정성을 고려한 항공기 구조물의 유체-구조간 상호 간섭 현상의 수치 해석 (Numerical Analysis for Fluid-Structure Interaction in Aircraft Structure Considering Uncertainty)

  • 정찬훈;신상준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.251-257
    • /
    • 2007
  • For the modern aircraft, uncertainty has bee an important issue to its aeroelastic stability. Therefore, many researches have been conducted regarding this topic. The uncertainties in the aeroelastic system amy consist of the structural and aerodynamic uncertainty. In this paper, we suggest a parametric uncertainty modeling and conduct the aeroelastic stability analysis of a typical wing including the uncertainty.

  • PDF

Dynamic modeling and structural reliability of an aeroelastic launch vehicle

  • Pourtakdoust, Seid H.;Khodabaksh, A.H.
    • Advances in aircraft and spacecraft science
    • /
    • 제9권3호
    • /
    • pp.263-278
    • /
    • 2022
  • The time-varying structural reliability of an aeroelastic launch vehicle subjected to stochastic parameters is investigated. The launch vehicle structure is under the combined action of several stochastic loads that include aerodynamics, thrust as well as internal combustion pressure. The launch vehicle's main body structural flexibility is modeled via the normal mode shapes of a free-free Euler beam, where the aerodynamic loadings on the vehicle are due to force on each incremental section of the vehicle. The rigid and elastic coupled nonlinear equations of motion are derived following the Lagrangian approach that results in a complete aeroelastic simulation for the prediction of the instantaneous launch vehicle rigid-body motion as well as the body elastic deformations. Reliability analysis has been performed based on two distinct limit state functions, defined as the maximum launch vehicle tip elastic deformation and also the maximum allowable stress occurring along the launch vehicle total length. In this fashion, the time-dependent reliability problem can be converted into an equivalent time-invariant reliability problem. Subsequently, the first-order reliability method, as well as the Monte Carlo simulation schemes, are employed to determine and verify the aeroelastic launch vehicle dynamic failure probability for a given flight time.

Efficient Time Domain Aeroelastic Analysis Using System Identification

  • Kwon, Hyuk-Jun;Kim, Jong-Yun;Lee, In;Kim, Dong-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제6권1호
    • /
    • pp.52-60
    • /
    • 2005
  • The CFD coupled aeroelastic analyses have significant advantages over linear panel methods in their accuracy and usefulness for the simulation of actual aeroelastic motion after specific initial disturbance. However, in spite of their advantages, a heavy computation time is required. In this paper, a method is discussed to save a computational cost in the time domain aeroelastic analysis based on the system identification technique. The coefficients of system identification model are fit to the computed time response obtained from a previously developed aeroelastic analysis code. Because the non-dimensionalized data is only used to construct the model structure, the resulting model of the unsteady CFD solution is independent of dynamic pressure and this independency makes it possible to find the flutter dynamic pressure without the unsteady aerodynamic computation. To confirm the accuracy of the system identification methodology, the system model responses are compared with those of the CFD coupled aeroelastic analysis at the same dynamic pressure.

Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system

  • Azzi, Ziad;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam Gan;Shdid, Caesar Abi
    • Wind and Structures
    • /
    • 제34권2호
    • /
    • pp.231-257
    • /
    • 2022
  • Transmission lines systems are important components of the electrical power infrastructure. However, these systems are vulnerable to damage from high wind events such as hurricanes. This study presents the results from a 1:50 scale aeroelastic model of a multi-span transmission lines system subjected to simulated hurricane winds. The transmission lines system considered in this study consists of three lattice towers, four spans of conductors and two end-frames. The aeroelastic tests were conducted at the NSF NHERI Wall of Wind Experimental Facility (WOW EF) at the Florida International University (FIU). A horizontal distortion scaling technique was used in order to fit the entire model on the WOW turntable. The system was tested at various wind speeds ranging from 35 m/s to 78 m/s (equivalent full-scale speeds) for varying wind directions. A system identification (SID) technique was used to evaluate experimental-based along-wind aerodynamic damping coefficients and compare with their theoretical counterparts. Comparisons were done for two aeroelastic models: (i) a self-supported lattice tower, and (ii) a multi-span transmission lines system. A buffeting analysis was conducted to estimate the response of the conductors and compare it to measured experimental values. The responses of the single lattice tower and the multi-span transmission lines system were compared. The coupling effects seem to drastically change the aerodynamic damping of the system, compared to the single lattice tower case. The estimation of the drag forces on the conductors are in good agreement with their experimental counterparts. The incorporation of the change in turbulence intensity along the height of the towers appears to better estimate the response of the transmission tower, in comparison with previous methods which assumed constant turbulence intensity. Dynamic amplification factors and gust effect factors were computed, and comparisons were made with code specific values. The resonance contribution is shown to reach a maximum of 18% and 30% of the peak response of the stand-alone tower and entire system, respectively.

Aeroelastic analysis of bridges using FEM and moving grids

  • Selvam, R. Panneer;Govindaswamy, S.;Bosch, Harold
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.257-266
    • /
    • 2002
  • In the recent years flow around bridges are investigated using computer modeling. Selvam (1998), Selvam and Bosch (1999), Frandsen and McRobie (1999) used finite element procedures. Larsen and Walther (1997) used discrete vorticity procedure. The aeroelastic instability is a major criterion to be checked for long span bridges. If the wind speed experienced by a bridge is greater than the critical wind speed for flutter, then the bridge fails due to aeroelastic instability. Larsen and Walther (1997) computed the critical velocity for flutter using discrete vortex method similar to wind tunnel procedures. In this work, the critical velocity for flutter will be calculated directly (free oscillation procedure) similar to the approaches reported by Selvam et al. (1998). It is expected that the computational time required to compute the critical velocity using this approach may be much shorter than the traditional approach. The computed critical flutter velocity of 69 m/s is in reasonable comparison with wind tunnel measurement. The no flutter and flutter conditions are illustrated using the bridge response in time.

비점성 저차모델링 기법을 활용한 비선형 플러터 해석 (NONLINEAR FLUTTER ANALYSIS USING INVISCID REDUCED ORDER MODELING TECHNIQUE)

  • 김요한;김동현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.458-464
    • /
    • 2011
  • A new method identifies coupled fluid-structure system with a reduced set of state variables is presented. Assuming that the structural model is known a priori either from an analysis or a test and using linear transformations between structural and aeroelastic states, it is possible to deduce aerodynamic information from sampled time histories of the aeroelastic system. More specifically given a finite set of structural modes the method extracts generalized aerodynamic force matrix corresponding to these mode shapes. Once the aerodynamic forces are known, an aeroelastic reduced-order model can be constructed in discrete-time, state-space format by coupling the structural model and the aerodynamic system. The resulting reduced-order model is suitable for constant Mach, varying density analysis.

  • PDF