


   
 

2

2. Aeroelastic Model  

2.1 Three-dimensional Wing  
 

For a preliminary study, we conducted an 
analysis about a two-dimensional airfoil 
section. However, in such an airfoil analysis, 
generalized mass, stiffness and aerodynamic 
effects were not included. The airfoil analysis 
also needed more assumptions. Thus, for more 
accurate prediction, we need to consider a 
three-dimensional wing model. Figure 2.1 
represents a three-dimensional wing. This is 
the model examined by Goland [4]. We 
assume that the present wing is a uniform and 
cantilevered wing  
 

 
Figure  1.  Three-dimensional wing model 

 
2.2 Governing Equations 
 
Aeroelastic equations can be represented as a 
typical mechanical vibration governing 
equation as follows. 
 

         GMq Kq F+ =              (1)  
 

Hodges suggested to use Eq. (1) based on the 
generalized modes [5]. In Eq. (1), q  denotes 

generalized bending and torsion modes. 
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Three bending and three torsional mode 
shapes are used in the present analysis as 
follows. 
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In Eq. (1), the mass and stiffness matrix are 
the generalized mass and stiffness matrix, 
which can be described as follows. 
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In above equation, Δ matrix means an identity 
matrix, and elements of matrix A represent 
coupling between the modes and can be 
expressed as follows. 
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Matrices B and T are diagonal matrices given 
as follows. 
 

4( )ii iB lα=               (10) 

 
4( )ii iT lγ=               (11) 

 

In Eq. (1), GF  denotes the generalized 

aerodynamic forces. They consist of the 
generalized lift and pitching moment. Hodges 
also suggested the generalized aerodynamic 
forces as follows. 
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GF ω

θ

Ξ⎡ ⎤
= ⎢ ⎥Ξ⎣ ⎦

              (12) 

 
The present three-dimensional aerodynamic 
forces are developed based on the two-

dimensional lift and moment. In Eq. (12), wΞ  

and θΞ  denotes the generalized lift and 

moment, respectively, and which are 
formulated as follows. 
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where the two-dimensional lift and moment 
are obtained from the previous study as 
follows. 
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The aerodynamic force is now constructed 
as a matrix equation as follows. 
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We assume a simple harmonic motion. 
 

expiwtη η=            (18) 

 

 expiwtθ θ=            (19) 

 

2

m
b

μ
πρ

=              (20) 

 
Then, the aeroelastic governing equation is 
finalized as follows. 
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3. Uncertainty Modeling 
 

3.1 Uncertainty in the Aeroelastic System 
 
Livne reported that the uncertainty problem 
would be one of the important future topics in 
aeroelasticity [6]. In the present aeroelastic 
stability analysis, we add an uncertainty which 
consists of the structural and aerodynamic 
uncertainty. Structural uncertainty is induced 
by change of the stiffness and mass.  
Such variation of stiffness and mass influences 
the natural frequency of the wing. And of the 
varied natural frequencies induce a variation in 
the generalized mass and stiffness. Finally, 
these changes influence aerodynamic forces 
acting on the wing. Therefore, in this paper, 
we consider these uncertainties and suggest 
aeroelastic stability analysis including them. 
 
3.2 Structured Parametric Uncertainty  

 
In order to include uncertainty, the previous 
aeroelastic equations need to be converted 
into an uncoupled form. For that, we use the 
modal mass and stiffness matrices obtained as 
follows. 
 

' TM E ME=               (22) 
 

' TK E KE=               (23) 
  

Then, the modal mass and stiffness matrices 
become diagonalized. Now, we assume that the 
modal stiffness has some uncertainty weight 
values defined as follows. 
 

'wK W K= ×             (24) 

 
where the uncertainty weight matrix W can be 
represented as follows. 
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1 2( , , (0))W diag w w diag=      (25) 

 
3.3 Aerodynamic Uncertainty 
 
When the structural mode shape of the wing 
has an unsteady variation, then the resulting 
aerodynamic force exhibits a difference in its 
magnitude and phase. Furthermore, if the 
aircraft is operated in either a compressible or 
incompressible flight regime, its unsteady 
aerodynamic forces will also have a different 
value in its magnitude or phase. Such variation 
in the aerodynamic forces may be represented 
by that in the Theodorsen lift deficiency 
function. So, we consider the aerodynamic 
uncertainty based on Theodorsen’s function. 
The Theodorsen’s function is generally 
defined as 
 

( ) ( ) ( )C k F k G k i= +         (26) 

 
Then we assume its real and imaginary part 
has its respective uncertainty weight value. 
Now the Theodorsen’s function can be 
represented as follows. 
 

1 2( ) ( ) ( )wC k w F k w G k i= +     (27) 

 

4. Numerical Results. 
4.1 Goland’s Wing 
 
We use the Goland’s three-dimensional wing, 
and Table 1 shows the characteristic values of 
it. 
 

Table 1. Characteristic values of the wing  
 

Wing 
Span 

20 ft  Static 
Imbalance 

0.447 /slug ft  

Chord 6 ft  EI 631.7 10m× ×
3 /lb ft slug⋅  

Radius of 
gyration 

25%  
chord 

GJ 61.23 10I × ×
/lb ft slug⋅  

Spanwise 
elastic 
axis 

33%  
chord  

Mass 
moment of 

inertia 

1.943  
2 /slug ft ft⋅  

Center of 
gravity 

43%  
Chord  

Mass of 
unit length 

0.743 /slug ft

Semi 
chord 

3 ft    

 
4.2 Numerical Results  
 
Table 2 shows the results of the structural 
natural frequencies. 
 

Table 2. Natural frequency results (rad/s) 
 

 1st
B 

1st
T 

2nd 
B 

2nd 
T 

3rd
B 

3rd
T 

Goland 
[4] 

50.0 87.
0 

- - - - 

Present 
method 
(with S)

47.8 91.
6 

333
.9 

249
.0 

123
5.9

429
.2 

Present 
method 
(without 

S) 

48.5 87.
1 

310
.1 

261
.3 

868
.4 

435
.5 

Uncoupl
ed beam
analysis

49.5 87.
1 

308
.4 

261
.3 

868
.2 

435
.5 

 
In Table 2, S denotes the static imbalance, and 
we compute the difference between two cases, 
in which one includes the static imbalance and 
the other without it. By Eq. (7), S can be 
expressed as follows. 
 

S mxθ=               (28) 
 
Table 3 shows the results about the flutter 
speeds both at 20,000 ft above the sea level 
and at the sea level. 
 

Table 3. Flutter speed and frequency results 
 

 Sea level 20,000 ft above 
the sea level 

 Quasi 
Steady

Unste
ady 

Quasi 
steady 

Unstea
dy 

Flutter 
speed 

476 
ft/sec 

465 
ft/sec 

579 
ft/sec 

576 
ft/sec 

Flutter 
frequency

87 
rad/s 

85 
rad/s 

86.5 
rad/s 

88 
rad/s 

 
In Table 3, we use the atmospheric density 
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equation as follows. 
 

4.2561
0 (1 0.000006875 )hρ ρ= −     (29) 

 
To analyze the influence on the flutter 
characteristics due to the uncertainty, we use 
a structured parametric uncertainty weight 
value conducted as follows. Figures 2 and 3 
show the influence on the first bending and 
torsion natural frequencies by the weight 
values of the coupled modes. 
 

 
Figure 2. Natural frequency vs. the first 

coupled mode weight values 
 

 
Figure 3. Natural frequency vs. the second 

coupled mode weight values 
From Figures 2 and 3, an uncertainty of the 
first coupled mode influences the first bending 
modes and that of the second coupled mode 
influences the first torsion mode. However, in 
the previous result, it is found that such a high 

coupling does not influence much upon the 
natural frequency. The first coupled mode is a 
combination of the first pure bending and the 
first pure torsion mode, but dominated by the 
bending mode. Thus, it influences a lot on the 
bending frequency. The second coupled mode 
is also a mixture of the same modes, but 
dominated by the torsion mode. Then, it 
influences much on the torsional frequency. 
Figures 4 and 5 represent the influence of the 
weight values at each coupled mode upon the 
flutter speed and frequency.  

 
Figure 4. Flutter speed in terms of the weight 

on each coupled mode 
 

 
Figure 5. Flutter frequency in terms of the 

weight values on each coupled mode 
As shown in Figures 4 and 5, an uncertainty 
on the first coupled mode influences much 
more significantly than that on the second 
coupled mode does upon the flutter speed of 
the aircraft. In the wing flutter analysis, an 
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influence by the first mode pure bending 
motion is usually most significant. In the 
present analysis, the weight on the first 
coupled mode signifies a variation of the first 
mode pure bending motion. Thus, its influence 
is most significant on the flutter results. 
For an uncertainty in unsteady aerodynamic 
forces, we apply a weight value upon the real 
and imaginary parts in the Theodorsen’s 
function. Figures 6 and 7 show the flutter 
speed and frequency results in terms of the 
weight values included in the real and 
imaginary parts. 
 

 
Figure 6. Flutter speed in terms of the weight 

values in the Theodorsen’s function 
 

 
Figure 7. Flutter frequency in terms of weight 

values in the Theodorsen’s function 
 

As shown in Figures 7 and 8, an uncertainty in 
the imaginary part influences much upon the 
flutter characteristics of the aircraft, On the 
contrary, an effect of uncertainty in the real 
part almost does not influence any on them. In 
the Theodorsen’s function, the imaginary part 
is a phase lag of the unsteady aerodynamic 

forces with respect to the wing motion. 
Therefore, it is concluded that a phase 
variation on the unsteady aerodynamic forces 
induces a much more significant change in the 
flutter characteristics of the aircraft. 

5. Conclusions 
In this paper, we study the uncertainty effects 
which exist in the structural and aerodynamic 
aspects. We predict the flutter boundary and 
frequency of the aircraft including the 
uncertainty. We suggest a quite simple model 
to predict its stability which contains the 
parametric structural and aerodynamic 
uncertainties. From the numerical results 
obtained, it is found that the first coupled 
mode uncertainties are more influential than 
the second coupled mode uncertainty is on the 
flutter characteristics. For an aerodynamic 
force uncertainty, we assume that the 
uncertainty exists in the Theodorsen’s 
function. The uncertainty in the imaginary part 
is much more influential than the real part 
uncertainty is. In the future, we will verify the 
present stability boundary results with the 
doublet lattice method. And, we will examine 
an active aeroelastic control device on the 
aircraft and design its control laws to augment 
the stability including the uncertainty. 
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