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Numerical Analysis for Fluid-Structure Interaction m Aircraft Structure
Considering Uncertainty
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ABSTRACT

For the modern aircraft, uncertainty has been an Iimportant issue to It aeroelastic stability.
Therefore, many researches have been conducted regarding this topic. The uncertainties in the
aeroelastic system may consist of the structural and zerodynamic uncertainty. In this paper, we
suggest a parametric uncertainty modeling and conduct the aerpelastic stability analysis of a typical

wing including the uncertainty.

1. Introduction

The modern aircrafts, especially the military
aircrafts, are generally required to have higher
performance and maneuverability while they
perform the missions. However, there are still
some limitations in those aircrafts. The
aerpelastic phenomenon, flutter, is one of the
important situations which limit the aircraft
flight speed. Such aeroelastic issue was early
founded by Wright Brothers and many
researchers have studied it to improve the
performance of the aircrafts.

On the other hand, when the aircraft operates
in a high speed flight, there may exist many
uncertainties in its structural and aerodynamic
characteristics. For example, a slight change
of the wing structural mode may induce a
variation of its aerodynamic forces. These
uncertainties  will ultimately influence the
flutter speed characteristics of the aircraft.
Thus, an accurate prediction of the flutter
speed including those uncertainties will be
quite important to the aircraft safety.
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Center suggested a match point solution
method about a robust flutter prediction [1].

He examined the wvariation of the aircraft
flutter speed in terms of the variation of the
altitude. Borglund suggested a u—k method for
a robust aeroelastic stability analysis [2].
However, those examinations have not
considered an uncertainty in the generalized
forces and the structural mode. When an
aeroelastic interaction occurs on the aircraft
structure, its deflection modes may have a
significant change. Furthermore, if the
structural mode changes, the aerodynamic
force acting on it should be different as well.
Danowsky suggested a flutter prediction
method including these uncertainties [3]. He
used a NASTRAN structural model and a
doublet lattice aerodynamics. However, this
method required a large number of discretized
panels for an accurate analysis.

In the present paper, we suggest an analysis
of aeroelastic stability boundary in frequency
domain when varying the natural frequencies.
We apply the developed analysis to a three—
dimensional wing which was analyzed by
(soland [4]. For aerodynamics, the analysis is
based on the lifting line theory. For
uncertainty, we use parametric structural and
aerodynamic uncertainties,



2. Aeroelastic Model
2.1 Three-dimensional Wing

For a preliminary study, we conducted an
analysis about a two—dimensional airfoil
section. However, in such an airfoil analysis,
generalized mass, stiffness and aerodynamic
effects were not included. The airfoil analysis
also needed more assumptions. Thus, for more
accurate prediction, we need to consider a
three—dimensional wing model. Figure 2.1
represents a three—dimensional wing. This is
the model examined by Goland [4]. We
assume that the present wing is a uniform and
cantilevered wing

Three—dimensional wing model

Figure 1.

2.2 Governing Equations

Aeroelastic equations can be represented as a

typical mechanical vibration governing
equation as follows.
Mg + Kq = F; (1)

Hodges suggested to use Eq. (1) based on the
generalized modes [5]. In Eq. (1), q denotes

generalized bending and torsion modes.
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Three bending and three torsional mode
shapes are used in the present analysis as
follows.

W; = cosh(e;y) —cos(e;y) — B [sinh(e;y) —sin(e; Y)]

(3)
iz
o = T (4)
®, =2(ry) (5)
(i —1)
yo=—2 (6)

In Eq. (1), the mass and stiffness matrix are
the generalized mass and stiffness matrix,
which can be described as follows.

M =m|{ (A} —bx,[A] } 7
—bx,[A] b*r’[A]
%[B] [0]
K = . )
0] =T

In above equation, A matrix means an identity
matrix, and elements of matrix A represent
coupling between the modes and can be
expressed as follows.

1 ¢
A=y I0®i‘Pidy (9)

Matrices B and 7 are diagonal matrices given
as follows.

B, = (o) (10)
T, = (D’ 1D

In Eq. (1), F; denotes the generalized

aerodynamic forces. They consist of the
generalized lift and pitching moment. Hodges
also suggested the generalized aerodynamic
forces as follows.



F = [f“’} (12)
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The present three—dimensional aerodynamic
forces are developed based on the two—

dimensional lift and moment. In Eq. (12), &,

and Ee denotes the generalized lift and
moment, respectively, and which are

formulated as follows.

=, _j\PLdy (13)

Z, :J‘;®i[M{/4+(l/2+a)bL']dy (14)

where the two—dimensional lift and moment
are obtained from the previous study as
follows.
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The aerodynamic force is now constructed
as a matrix equation as follows.

2] [A] ba[ A]" y
E, | Pb’ ba[A] b*(a? +1/8)[A] a

o 20(K)[A] —H{1+2(1/2-a)CK)J[AT q
(1/2+a)C(K)[A] b*(1/2—-a)1-2(1/2+a)CK)][A]
bl [[01 ~2C(K)[A] } q
[0] —-b(+2a)C(k)[A]
We assume a simple harmonic motion.
n=nexp™ (18)
0 =0 exp™ (19)

m (20)

"= 7pb’

Then, the aeroelastic governing equation is
finalized as follows.

Mll Mlz Iz — 0 (21)
M, M, | & 0
3. Uncertainty Modeling

3.1 Uncertainty in the Aeroelastic System

Livne reported that the uncertainty problem
would be one of the important future topics in
aeroelasticity [6]. In the present aeroelastic
stability analysis, we add an uncertainty which
consists of the structural and aerodynamic
uncertainty. Structural uncertainty is induced
by change of the stiffness and mass.

Such variation of stiffness and mass influences
the natural frequency of the wing. And of the
varied natural frequencies induce a variation in
the generalized mass and stiffness. Finally,
these changes influence aerodynamic forces
acting on the wing. Therefore, in this paper,
we consider these uncertainties and suggest
aeroelastic stability analysis including them.

3.2 Structured Parametric Uncertainty

In order to include uncertainty, the previous
aeroelastic equations need to be converted
into an uncoupled form. For that, we use the
modal mass and stiffness matrices obtained as
follows.

M'=E"ME (22)

K'=E'KE (23)

Then, the modal mass and stiffness matrices
become diagonalized. Now, we assume that the

modal stiffness has some uncertainty weight
values defined as follows.

K, =W xK' (24)

where the uncertainty weight matrix W can be
represented as follows.



W =diag(w,, w,,diag(0)) (25)
3.3 Aerodynamic Uncertainty

When the structural mode shape of the wing
has an unsteady variation, then the resulting
aerodynamic force exhibits a difference in its
magnitude and phase. Furthermore, if the
aircraft is operated in either a compressible or
incompressible flight regime, its unsteady
aerodynamic forces will also have a different
value in its magnitude or phase. Such variation
in the aerodynamic forces may be represented
by that in the Theodorsen lift deficiency
function. So, we consider the aerodynamic
uncertainty based on Theodorsen’s function.
The Theodorsen’s function 1is generally
defined as

C(k) = F(K) +G(K)i (26)

Then we assume its real and imaginary part
has its respective uncertainty weight value.
Now the Theodorsen’s function can be
represented as follows.

C,(K)=WFK)+w,GK)i (@7

4. Numerical Results.
4.1 Goland’s Wing
We use the Goland’s three—dimensional wing,
and Table 1 shows the characteristic values of

it.

Table 1. Characteristic values of the wing

Semi 3ft
chord

4.2 Numerical Results

Table 2 shows the results of the structural
natural frequencies.

Table 2. Natural frequency results (rad/s)

1st | Ist | 2nd | 2nd | 3rd | 3rd
B T B T B T
Goland | 50.0 | 87. - - - -
(4] 0
Present | 47.8 | 91. | 333 | 249 | 123 | 429
method 6 .9 .0 5.9 2
(with S
Present | 48.5 | 87. | 310 | 261 | 868 | 435
method 1 1 .3 A4 .5
(without
S)
Uncoupl | 49.5 | 87. | 308 | 261 | 868 | 435
ed beam 1 4 .3 2 .5
analysis

In Table 2, S denotes the static imbalance, and
we compute the difference between two cases,
in which one includes the static imbalance and
the other without it. By Eq. (7), S can be
expressed as follows.

S =mx, (28)
Table 3 shows the results about the flutter
speeds both at 20,000 ft above the sea level

and at the sea level.

Table 3. Flutter speed and frequency results

Wing 20 ft Static 0.447slug/ ft
Span Imbalance
Chord 6 ft EI mx31.7x10°
Ib- ft* /slug
Radius of | 25% GJ I x1.23%10°
gyration | chord Ib- ft/slug
Spanwise | 33% Mass 1.943
elastic chord | moment of | slug- ft*/ ft
axis inertia
Center of | 43% Mass of 0.743slug / ft
gravity Chord | unit length

Sea level 20,000 ft above
the sea level
Quasi Unste | Quasi Unstea
Steady | ady steady | dy
Flutter 476 465 579 576
speed ft/sec | ft/sec | ft/sec | ft/sec
Flutter 87 85 86.5 88
frequency | rad/s rad/s | rad/s rad/s

In Table 3, we use the atmospheric density




equation as follows.
P = p,(1-0.000006875h)**°"  (29)

To analyze the influence on the flutter
characteristics due to the uncertainty, we use
a structured parametric uncertainty weight
value conducted as follows. Figures 2 and 3
show the influence on the first bending and
torsion natural frequencies by the weight
values of the coupled modes.

Natural frequency vs. the first coupled mode welght values
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Figure 2. Natural frequency vs. the first
coupled mode weight values

Matural frequency vs. the second coupled mode weight values
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Figure 3. Natural frequency vs. the second
coupled mode weight values
From Figures 2 and 3, an uncertainty of the
first coupled mode influences the first bending
modes and that of the second coupled mode
influences the first torsion mode. However, in
the previous result, it is found that such a high

coupling does not influence much upon the
natural frequency. The first coupled mode is a
combination of the first pure bending and the
first pure torsion mode, but dominated by the
bending mode. Thus, it influences a lot on the
bending frequency. The second coupled mode
is also a mixture of the same modes, but
dominated by the torsion mode. Then, it
influences much on the torsional frequency.
Figures 4 and 5 represent the influence of the
weight values at each coupled mode upon the
flutter speed and frequency.
Weight Value vs Flutter Speed
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Figure 4. Flutter speed in terms of the weight
on each coupled mode

Weight value vs flutter frequency
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Figure 5. Flutter frequency in terms of the
weight values on each coupled mode
As shown in Figures 4 and 5, an uncertainty
on the first coupled mode influences much
more significantly than that on the second
coupled mode does upon the flutter speed of
the aircraft. In the wing flutter analysis, an



influence by the first mode pure bending
motion 1s usually most significant. In the
present analysis, the weight on the first
coupled mode signifies a variation of the first
mode pure bending motion. Thus, its influence
1s most significant on the flutter results.

For an uncertainty in unsteady aerodynamic
forces, we apply a weight value upon the real
and imaginary parts in the Theodorsen’s
function. Figures 6 and 7 show the flutter
speed and frequency results in terms of the
weight values included in the real and
imaginary parts.
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Figure 6. Flutter speed in terms of the weight
values in the Theodorsen’s function

C(k) weigth value vs flutter frequency
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Figure 7. Flutter frequency in terms of weight
values in the Theodorsen's function

As shown in Figures 7 and 8, an uncertainty in
the imaginary part influences much upon the
flutter characteristics of the aircraft, On the
contrary, an effect of uncertainty in the real
part almost does not influence any on them. In
the Theodorsen’'s function, the imaginary part
1s a phase lag of the unsteady aerodynamic

forces with respect to the wing motion.
Therefore, it is concluded that a phase
variation on the unsteady aerodynamic forces
induces a much more significant change in the
flutter characteristics of the aircraft.

5. Conclusions

In this paper, we study the uncertainty effects
which exist in the structural and aerodynamic
aspects. We predict the flutter boundary and
frequency of the aircraft including the
uncertainty. We suggest a quite simple model
to predict its stability which contains the
parametric structural and aerodynamic
uncertainties. From the numerical results
obtained, it is found that the first coupled
mode uncertainties are more influential than
the second coupled mode uncertainty is on the
flutter characteristics. For an aerodynamic
force uncertainty, we assume that the
uncertainty exists in the Theodorsen’ s
function. The uncertainty in the imaginary part
i1s much more influential than the real part
uncertainty is. In the future, we will verify the
present stability boundary results with the
doublet lattice method. And, we will examine
an active aeroelastic control device on the
aircraft and design its control laws to augment
the stability including the uncertainty.
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