DOI QR코드

DOI QR Code

구조 불확도를 고려한 강건 공탄성 해석

Robust Aeroelastic Analysis considering a Structural Uncertainty

  • 투고 : 2015.03.31
  • 심사 : 2015.08.15
  • 발행 : 2015.09.01

초록

공력탄성학적 안정성 해석에 있어서 모델링 오차 및 구조 불확도에 의해 결과의 정확도는 떨어질 수 있다. 따라서, 이러한 모델링 오차 및 구조 불확도를 고려한 공탄성 안정성 경계를 예측할 필요가 있다. 이러한 모델링 오차 및 불확도를 고려한 공탄성 안정성 예측을 위해 강건 공탄성 해석이 제안되었다. 본 연구에서는 ${\mu}$ 해석기법과 모달접근법과 MSA를 사용한 조종날개의 공탄성 모델로 부터 강건 공탄성 모델링과 해석을 수행하였다. 강건 공탄성 해석 프로그램이 개발되었고, 기존의 공탄성 해석 결과와 비교/검증하였다.

An aeroelastic stability can be degraded due to an aeroelastic modeling error and a structural uncertainty. Therefore it is necessary to predict the aeroelastic stability boundary considering an aeroelastic modeling error and a structural uncertainty. Robust aeroelastic analysis was proposed to predict the aeroelastic stability boundary considering these error and uncertainty. In the present study, the robust aeroelastic modeling and analysis were performed by using the ${\mu}$ analysis technique and the aeroelastic model of the control fin with modal approach and MSA. The computer program for the robust aeroelastic analysis was developed and verified by comparing its results with those of conventional aeroelastic analysis methods.

키워드

참고문헌

  1. Dowell, E. H., Crawley, E. F., Curtiss Jr., H. C., Peters, D. A., Scanlan, R. H., and Sisto, F., A Mordern Couse in Aeroelasticity, Kluwer Academic Publishers, 1955.
  2. Lind, R., "Match-Point Solutions for Robust Flutter Analysis," Journal of Aircraft, Vol. 39, No. 1, 2002, pp. 91-99. https://doi.org/10.2514/2.2900
  3. Pettit, C. L., "Uncertainty Quantification in Aeroelasticity : Recent Results and Research Challenges," Journal of Aircraft, Vol. 41, No. 5, 2004, pp. 1217-1229. https://doi.org/10.2514/1.3961
  4. Lind, R. and Bernner, M., Robust Aeroservoelastic Stability Analysis, Springer, New York, 1999.
  5. Borglund, D., "Robust Aeroelastic Stability Analysis Considering Frequency- Domain Aerodynamic Uncertainty," Journal of Aircraft, Vol. 40, No. 1, 2003, pp. 189-193. https://doi.org/10.2514/2.3074
  6. Borglund, D., "The -k method for Robust Flutter Solutions," Journal of Aircraft, Vol. 41, No. 5, 2004, pp. 1209-1216. https://doi.org/10.2514/1.3062
  7. Borglund, D., "Robust Aeroelastic Analysis in the Laplace Domain : The -p Method," International Forum on Aeroelasticity and Structure Dynamics, Stockholm, Sweden. 2007.
  8. Bae, J.S., Yang, S.M. and Lee, I., "Linear and Nonlinear Aeroelastic Analysis of a Fighter-Type Wing with Control Surface," Journal of Aircraft, Vol. 39, No. 4, 2002, pp. 697-708. https://doi.org/10.2514/2.2984
  9. Karple, M., "Design for Active Flutter Suppression and Gust Alleviation Using State-Space Aeroelastic Modeling," Journal of Aircraft, Vol. 19, No. 3, 1982, pp. 221-227. https://doi.org/10.2514/3.57379
  10. Bae, J.S., Shin, W.H., Lee, I., and Shin, Y.S., "Aeroelastic Analysis of Deployable Missile Control Fin with Bilinear Nonlinearity," Journal of the Korean Society for Aeronautical ans Space Sciences, Vol. 30. No. 7, 2002. pp. 29-35. https://doi.org/10.5139/JKSAS.2002.30.7.029
  11. Shin, W.H., Bae, J.S., and Lee, I., "Dual-Limit Cycle Oscillation of 2D Typical Section Model considering Structural Nonlinearities," Journal of the Korean Society for Aeronautical ans Space Sciences, Vol. 33. No. 5, 2005. pp. 28-33. https://doi.org/10.5139/JKSAS.2005.33.5.028