• Title/Summary/Keyword: aerial imagery

Search Result 227, Processing Time 0.028 seconds

Derivation of Green Coverage Ratio Based on Deep Learning Using MAV and UAV Aerial Images (유·무인 항공영상을 이용한 심층학습 기반 녹피율 산정)

  • Han, Seungyeon;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1757-1766
    • /
    • 2021
  • The green coverage ratio is the ratio of the land area to green coverage area, and it is used as a practical urban greening index. The green coverage ratio is calculated based on the land cover map, but low spatial resolution and inconsistent production cycle of land cover map make it difficult to calculate the correct green coverage area and analyze the precise green coverage. Therefore, this study proposes a new method to calculate green coverage area using aerial images and deep neural networks. Green coverage ratio can be quickly calculated using manned aerial images acquired by local governments, but precise analysis is difficult because components of image such as acquisition date, resolution, and sensors cannot be selected and modified. This limitation can be supplemented by using an unmanned aerial vehicle that can mount various sensors and acquire high-resolution images due to low-altitude flight. In this study, we proposed a method to calculate green coverage ratio from manned or unmanned aerial images, and experimentally verified the proposed method. Aerial images enable precise analysis by high resolution and relatively constant cycles, and deep learning can automatically detect green coverage area in aerial images. Local governments acquire manned aerial images for various purposes every year and we can utilize them to calculate green coverage ratio quickly. However, acquired manned aerial images may be difficult to accurately analyze because details such as acquisition date, resolution, and sensors cannot be selected. These limitations can be supplemented by using unmanned aerial vehicles that can mount various sensors and acquire high-resolution images due to low-altitude flight. Accordingly, the green coverage ratio was calculated from the two aerial images, and as a result, it could be calculated with high accuracy from all green types. However, the green coverage ratio calculated from manned aerial images had limitations in complex environments. The unmanned aerial images used to compensate for this were able to calculate a high accuracy of green coverage ratio even in complex environments, and more precise green area detection was possible through additional band images. In the future, it is expected that the rust rate can be calculated effectively by using the newly acquired unmanned aerial imagery supplementary to the existing manned aerial imagery.

Estimation Carbon Storage of Urban Street trees Using UAV Imagery and SfM Technique (UAV 영상과 SfM 기술을 이용한 가로수의 탄소저장량 추정)

  • Kim, Da-Seul;Lee, Dong-Kun;Heo, Han-Kyul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.1-14
    • /
    • 2019
  • Carbon storage is one of the regulating ecosystem services provided by urban street trees. It is important that evaluating the economic value of ecosystem services accurately. The carbon storage of street trees was calculated by measuring the morphological parameter on the field. As the method is labor-intensive and time-consuming for the macro-scale research, remote sensing has been more widely used. The airborne Light Detection And Ranging (LiDAR) is used in obtaining the point clouds data of a densely planted area and extracting individual trees for the carbon storage estimation. However, the LiDAR has limitations such as high cost and complicated operations. In addition, trees change over time they need to be frequently. Therefore, Structure from Motion (SfM) photogrammetry with unmanned Aerial Vehicle (UAV) is a more suitable method for obtaining point clouds data. In this paper, a UAV loaded with a digital camera was employed to take oblique aerial images for generating point cloud of street trees. We extracted the diameter of breast height (DBH) from generated point cloud data to calculate the carbon storage. We compared DBH calculated from UAV data and measured data from the field in the selected area. The calculated DBH was used to estimate the carbon storage of street trees in the study area using a regression model. The results demonstrate the feasibility and effectiveness of applying UAV imagery and SfM technique to the carbon storage estimation of street trees. The technique can contribute to efficiently building inventories of the carbon storage of street trees in urban areas.

Geocoding of Low Altitude UAV Imagery using Affine Transformation Model (부등각사상변환을 이용한 저고도 UAV 영상의 지형보정)

  • Kim, Seong-Sam;Jung, Jae-Hoon;Kim, Eui-Myoung;Yoo, Hwan-Hee;Sohn, Hong-Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.79-87
    • /
    • 2008
  • There has been a strong demand for low altitude UAV development in rapid mapping not only to acquire high resolution image with much more low cost and weather independent, compared to satellite surveying or traditional aerial surveying, but also to meet many needs of the aerial photogrammetry. Especially, efficient geocoding of UAV imagery is the key issue. Contrary to high UAV potential for civilian applications, the technology development in photogrammetry for example direct georeferencing is in the early stage and it requires further research and additional technical development. In this study, two approaches are supposed for automatic geocoding of UAV still images by simple affine transformation and block adjustment of affine transformation using minimal ground control points and also evaluated the applicability and quality of geometric model compared to geocoded images generated by commercial S/W.

  • PDF

Detecting Land Cover Change in an Urban Area by Image Differencing and Image Ratioing Techniques (영상의 차연산과 비연산 기법에 의한 도시지역의 토지피복 변화탐지)

  • Lee, Jin-Duk;Jo, Chang-Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.43-52
    • /
    • 2004
  • This study presents the application of aerial photographs and the Korea Multi-Purpose Satellite, KOMPSAT-1 Electro-Optical Camera(EOC) imagery in detecting change in an urban area that has been rapidly growing. For the study, we used multi-temporal images which were acquired by two different sensors. Image registration and resampling were rallied out before performing change detection in a common reference system with the same spatial resolution. for all of the images. Results from image differencing and image ratioing techniques show that panchromatic aerial photographs and KOMPSAT-1 EOC images collected by different sensors have potential to detect changes of urban features such as building, road and other man-made structure. And the optimal threshold values were suggested in applying image differencing and image ratioing techniques for change detection.

  • PDF

Mapping the Spatial Distribution of IRG Growth Based on UAV

  • Na, Sang-Il;Park, Chan-Won;Kim, Young-Jin;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.495-502
    • /
    • 2016
  • Italian Ryegrass (IRG), which is known as high yielding and the highest quality winter annual forage crop, is grown in mid-south area in Korea. The objective of this study was to evaluate the use of unmanned aerial vehicle (UAV) for the monitoring IRG growth. Unmanned aerial vehicle imagery obtained from middle March to late May in Nonsan, Chungcheongnam-do. Unmanned aerial vehicle imagery corrected geometrically and atmospherically to calculate normalized difference vegetation index (NDVI). We analyzed the relationships between $NDVI_{UAV}$ of IRG and biophysical measurements such as plant height, fresh weight, and dry weight over an entire IRG growth period. The similar trend between $NDVI_{UAV}$ and growth parameters was shown. Correlation analysis between $NDVI_{UAV}$ and IRG growth parameters revealed that $NDVI_{UAV}$ was highly correlated with fresh weight (r=0.988), plant height (r=0.925), and dry weight (r=0.853). According to the relationship among growth parameters and $NDVI_{UAV}$, the temporal variation of $NDVI_{UAV}$ was significant to interpret IRG growth. Four different regression models, such as (1) Linear regression function, (2) Linear regression through the origin, (3) Power function, and (4) Logistic function were developed to evaluate the relationship between temporal $NDVI_{UAV}$ and measured IRG growth parameters. The power function provided higher accurate results to predict growth parameters than linear or logistic functions using coefficient of determination. The spatial distribution map of IRG growth was in strong agreement with the field measurements in terms of geographical variation and relative numerical values when $NDVI_{UAV}$ was applied to power function. From these results, $NDVI_{UAV}$ can be used as a new tool for monitoring IRG growth.

3D Building Model Texture Extraction from Multiple Spatial Imagery for 3D City Modeling (3차원 도시모델 생성을 위한 다중 공간영상 기반 건물 모델 텍스쳐 추출)

  • Oh, Jae-Hong;Shin, Sung-Woong;Park, Jin-Ho;Lee, Hyo-Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.347-354
    • /
    • 2007
  • Since large portal service providers started web services for 3D city models around the world using spatial imagery, the competition has been getting intense to provide the models with the higher quality and accuracy. The building models are the most in number among the 3D city model objects, and it takes much time and money to create realistic model due to various shapes and visual appearances of building object. The aforementioned problem is the most significant limitation for the service and the update of the 3D city model of the large area. This study proposed a method of generating realistic 3D building models with quick and economical texture mapping using multiple spatial imagery such as aerial photos or satellite images after reconstructed geometric models of buildings from building layers in digital maps. Based on the experimental results, the suggested method has effectiveness for the generation of the 3D building models using various air-borne imagery and satellite imagery quickly and economically.

A Study on Automatic Extraction of Buildings Using LIDAR with Aerial Imagery (LIDAR 데이터와 항공사진을 이용한 건물의 자동추출에 관한 연구)

  • 이영진;조우석
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.471-477
    • /
    • 2003
  • This paper presents an algorithm that automatically extracts buildings among many different features on the earth surface by fusing LIDAR data with panchromatic aerial images. The proposed algorithm consists of three stages such as point level process, polygon level process, parameter space level process. At the first stage, we eliminate gross errors and apply a local maxima filter to detect building candidate points from the raw laser scanning data. After then, a grouping procedure is performed for segmenting raw LIDAR data and the segmented LIDAR data is polygonized by the encasing polygon algorithm developed in the research. At the second stage, we eliminate non-building polygons using several constraints such as area and circularity. At the last stage, all the polygons generated at the second stage are projected onto the aerial stereo images through collinearity condition equations. Finally, we fuse the projected encasing polygons with edges detected by image processing for refining the building segments. The experimental results showed that the RMSEs of building corners in X, Y and Z were ${\pm}$8.1cm, ${\pm}$24.7cm, ${\pm}$35.9cm, respectively.

  • PDF

Research on Basic Investigation and Analysis for Iand Substitution Planing using High-resolution Satellite Imagery (환지계획 수립시 고해상 위성영상을 이용한 기초조사 및 분석에 관한 연구)

  • Choi, Seung Pil;Jeong, Cheol Ju;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.3-9
    • /
    • 2013
  • Various data like digital maps(1/1,000 or 1/5,000), field surveying, online materials and literatures are used for the preliminary investigation for urban development such as the feasibility evaluation, the profitability analysis, the zoning proposal, the zoning designation, and the land replotting planning. There are a couple of urban development methods like an expropriation, a replotting, a mixed-used method. The replotting method requires the consideration of land replotting types based on topography and building condition, which is not easy to gather data for the preliminary investigation maintaining the security of development planning. There are limitations of a preliminary investigation using aerial photos to detect topographic and building changes at specific period. GIS data combined with high-resolution imagery has advantages over the current dataset, which come from easy acquisition of various spatial resolution satellite images, wide swath coverage, the choice of imagery resolution satisfying a usage purpose, economic benefit comparing to aerial photos, and the calculation of distance and area on imagery from image modeling. For these reasons, the proposed method in this study enables to perform the more appropriate preliminary investigation using more accurate information.

Estimation of Classification Accuracy of JERS-1 Satellite Imagery according to the Acquisition Method and Size of Training Reference Data (훈련지역의 취득방법 및 규모에 따른 JERS-1위성영상의 토지피복분류 정확도 평가)

  • Ha, Sung-Ryong;Kyoung, Chon-Ku;Park, Sang-Young;Park, Dae-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.1
    • /
    • pp.27-37
    • /
    • 2002
  • The classification accuracy of land cover has been considered as one of the major issues to estimate pollution loads generated from diffuse landuse patterns in a watershed. This research aimed to assess the effects of the acquisition methods and sampling size of training reference data on the classification accuracy of land cover using an imagery acquired by optical sensor(OPS) on JERS-1. Two kinds of data acquisition methods were considered to prepare training data. The first was to assign a certain land cover type to a specific pixel based on the researchers subjective discriminating capacity about current land use and the second was attributed to an aerial photograph incorporated with digital maps with GIS. Three different sizes of samples, 0.3%, 0.5%, and 1.0% of all pixels, were applied to examine the consistency of the classified land cover with the training data of corresponding pixels. Maximum likelihood scheme was applied to classify the land use patterns of JERS-1 imagery. Classification run applying an aerial photograph achieved 18 % higher consistency with the training data than the run applying the researchers subjective discriminating capacity. Regarding the sample size, it was proposed that the size of training area should be selected at least over 1% of all of the pixels in the study area in order to obtain the accuracy with 95% for JERS-1 satellite imagery on a typical small-to-medium-size urbanized area.

  • PDF

A Study on the Changes in the Physical Environment of Resources in Rural Areas Using UAV -Focusing on Resources in Galsan-Myeon, Hongseong-gun- (무인항공기를 활용한 농촌 지역자원의 물리적 환경변화 분석연구 - 홍성군 갈산면 지역자원을 중심으로 -)

  • An, Phil-Gyun;Kim, Sang-Bum;Cho, Suk-Yeong;Eom, Seong-Jun;Kim, Young-Gyun;Cho, Han-Sol
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.4
    • /
    • pp.1-12
    • /
    • 2021
  • Recently, the use of unmanned aerial vehicles (UAVs) is increasing in the field of land information acquisition and terrain exploration through high-altitude aerial photography. High-altitude aerial photography is suitable for large-scale geographic information collection, but has the disadvantage that it is difficult to accurately collect small-scale geographic information. Therefore, this study used low-altitude UAV to monitor changes in small rural spaces around rural resources, and the results are as follows. First, the low-altitude aerial imagery had a very high spatial resolution, so it was effective in reading and analyzing topographic features. Second, an area with a large number of aerial images and a complex topography had a large amount of point clouds to be extracted, and the number of point clouds affects the three-dimensional quality of rural space. Third, 3D mapping technology using point cloud is effective for monitoring rural space and rural resources because it enables observation and comparison of parts that cannot be read from general aerial images. In this study, the possibility of rural space analysis of low-altitude UAV was verified through aerial photography and analysis, and the effect of 3D mapping on rural space monitoring was visually analyzed. If data acquired by low-altitude UAV are used in various forms such as GIS analysis and topographic map production it is expected to be used as basic data for rural planning to maintain and preserve the rural environment.