• Title/Summary/Keyword: aerial

Search Result 3,663, Processing Time 0.025 seconds

A Study on the Changes in the Physical Environment of Resources in Rural Areas Using UAV -Focusing on Resources in Galsan-Myeon, Hongseong-gun- (무인항공기를 활용한 농촌 지역자원의 물리적 환경변화 분석연구 - 홍성군 갈산면 지역자원을 중심으로 -)

  • An, Phil-Gyun;Kim, Sang-Bum;Cho, Suk-Yeong;Eom, Seong-Jun;Kim, Young-Gyun;Cho, Han-Sol
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.4
    • /
    • pp.1-12
    • /
    • 2021
  • Recently, the use of unmanned aerial vehicles (UAVs) is increasing in the field of land information acquisition and terrain exploration through high-altitude aerial photography. High-altitude aerial photography is suitable for large-scale geographic information collection, but has the disadvantage that it is difficult to accurately collect small-scale geographic information. Therefore, this study used low-altitude UAV to monitor changes in small rural spaces around rural resources, and the results are as follows. First, the low-altitude aerial imagery had a very high spatial resolution, so it was effective in reading and analyzing topographic features. Second, an area with a large number of aerial images and a complex topography had a large amount of point clouds to be extracted, and the number of point clouds affects the three-dimensional quality of rural space. Third, 3D mapping technology using point cloud is effective for monitoring rural space and rural resources because it enables observation and comparison of parts that cannot be read from general aerial images. In this study, the possibility of rural space analysis of low-altitude UAV was verified through aerial photography and analysis, and the effect of 3D mapping on rural space monitoring was visually analyzed. If data acquired by low-altitude UAV are used in various forms such as GIS analysis and topographic map production it is expected to be used as basic data for rural planning to maintain and preserve the rural environment.

Instance segmentation with pyramid integrated context for aerial objects

  • Juan Wang;Liquan Guo;Minghu Wu;Guanhai Chen;Zishan Liu;Yonggang Ye;Zetao Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.701-720
    • /
    • 2023
  • Aerial objects are more challenging to segment than normal objects, which are usually smaller and have less textural detail. In the process of segmentation, target objects are easily omitted and misdetected, which is problematic. To alleviate these issues, we propose local aggregation feature pyramid networks (LAFPNs) and pyramid integrated context modules (PICMs) for aerial object segmentation. First, using an LAFPN, while strengthening the deep features, the extent to which low-level features interfere with high-level features is reduced, and numerous dense and small aerial targets are prevented from being mistakenly detected as a whole. Second, the PICM uses global information to guide local features, which enhances the network's comprehensive understanding of an entire image and reduces the missed detection of small aerial objects due to insufficient texture information. We evaluate our network with the MS COCO dataset using three categories: airplanes, birds, and kites. Compared with Mask R-CNN, our network achieves performance improvements of 1.7%, 4.9%, and 7.7% in terms of the AP metrics for the three categories. Without pretraining or any postprocessing, the segmentation performance of our network for aerial objects is superior to that of several recent methods based on classic algorithms.

Estimated Abundance of the Narrow-ridged Finless Porpoise Neophocaena asiaeorientalis by Aerial and Shipboard Sighting Surveys in the Middle Region of the Western Coast of Korea (항공 및 선박 목시조사에 의한 서해 중부 연안해역의 상괭이(Neophocaena asiaeorientalis) 자원량 추정)

  • Jong Hee Lee;Kyunglee Lee;Namgyu Uh;Min Ju Kim;Yuna Cho;Hyun Woo Kim;Kyum Joon Park
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.889-898
    • /
    • 2023
  • This study was conducted to estimate the abundance of narrow-ridged finless porpoises Neophocaena asiaeorientalis in the West Coast of Korea, where they predominantly inhabit. Sighting surveys were conducted in March and November 2021-2022 using vessels and aircraft during the same time periods and along the same survey transects. The aerial surveys yielded significantly more sightings than shipboard surveys, with 8.5-21.6 times the abundance and 6.3-16.9 times the number of observations. The detection rates were 0.000-0.047 and 0.0103 to 0.539 per km2 for shipboard and aerial surveys, respectively. The densities were estimated to be 0.003-0.061 and 0.236-1.898 individuals per km2 in the shipboard and aerial surveys, respectively. The shipboard survey conducted in March 2022 and the aerial survey conducted in November 2021 had the highest detection rates and abundance. In the coastal waters, shipboard sighting surveys face numerous challenges due to factors such as fishing gear, islands, and shallow water depths. In contrast, aerial surveys have the advantage of a shorter survey period and are less affected by weather, fisheries, coastal lines, and other variables. Thus, they are highly suitable for studying narrow-ridged finless porpoises in the coastal areas of the West Sea.

A study on the product liability for defects of unmanned aerial vehciles (무인항공기 결함에 대한 제조물책임의 적용 연구)

  • Kim, Sun-Ihee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.1
    • /
    • pp.151-180
    • /
    • 2015
  • South Korea is advancing the unmanned aircraft private commercial business. Unmanned aerial vehciles industry has been developing for several years also abroad. However, unmanned aerial vehciles industry, can be an accident occurs. Accident of unmanned aerial vehciles to occur material damage and casualties. Particularly if an accident because of a defect in the unmanned aerial vehciles has occurred, it is necessary to analyze the liability for this. The defect accidents unmanned aerial vehciles has been the different manufacturing and design product is intended, whether it is important how to prove to this. This is because, unmanned aerial vehciles are designed in any intent of the original, it is impossible to victims know. So imposing a responsibility to prove the design by the manufacturer intended consumer is not fair. Moreover, the consumer, it is necessary to prove only that the product is one that normally dangerous lacked safety can be expected. This is a detailed issue of judgment of defects of unmanned aerial vehciles, the manufacturer to bear the accountability. In the case where the defect on the display of the unmanned aircraft is a problem, and if it reasonable indication, it is not appropriate to be required to prove that it was possible to prevent damage to the victim.

Analysis of Quantitative Topographical Change in Eulsuk-Island Using Aerial Images (항공영상을 이용한 을숙도 지형의 정량적 변화 분석)

  • Lee, Jae-One;Song, Yu-Jin;Kim, Yong-Suk;Park, Hong-Joo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.527-534
    • /
    • 2011
  • This paper describes an analysis of topographical changes to the Eulsuk-Island at the Nakdong River Estuary using a long-term dataset of high resolution aerial images from 1983 to 2007. Ground control surveying was performed at some feature points using GPS(Global Positioning System) to accomplish AT(Aerial Triangulation) for past aerial images. Even if some still existing feature points appeared on old aerial images were used as GCPs(Ground Control Points) for past aerial images in AT, its accuracy reached at 1m level. Since then, a quantitative analysis of topographical changes was conducted on digital orthophotos produced by a series of aerial images taken by different years. The change volume of total area, construction, vegetation, buildings and roads could be extracted per each period in study area. The total area decreased from 1983 to 1992, but it has not almost changed since 1992. According to the continuous development, the area of vegetation has steadily decreased, while that of buildings and roads has generally increased. The result of this study can provide us with invaluable base data for further topographical change monitoring in Eulsuk-Island and Nakdong River estuary caused by continuous development in this area.

Analysis of Time Series Changes in the Surrounding Environment of Rural Local Resources Using Aerial Photography and UAV - Focousing on Gyeolseong-myeon, Hongseong-gun - (항공사진과 UAV를 이용한 농촌지역자원 주변환경의 시계열 변화 분석 - 충청남도 홍성군 결성면을 중심으로 -)

  • An, Phil-Gyun;Eom, Seong-Jun;Kim, Yong-Gyun;Cho, Han-Sol;Kim, Sang-Bum
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.4
    • /
    • pp.55-70
    • /
    • 2021
  • In this study, in the field of remote sensing, where the scope of application is rapidly expanding to fields such as land monitoring, disaster prediction, facility safety inspection, and maintenance of cultural properties, monitoring of rural space and surrounding environment using UAV is utilized. It was carried out to verify the possibility, and the following main results were derived. First, the aerial image taken with an unmanned aerial vehicle had a much higher image size and spatial resolution than the aerial image provided by the National Geographic Information Service. It was suitable for analysis due to its high accuracy. Second, the more the number of photographed photos and the more complex the terrain features, the more the point cloud included in the aerial image taken with the UAV was extracted. As the amount of point cloud increases, accurate 3D mapping is possible, For accurate 3D mapping, it is judged that a point cloud acquisition method for difficult-to-photograph parts in the air is required. Third, 3D mapping technology using point cloud is effective for monitoring rural space and rural resources because it enables observation and comparison of parts that cannot be read from general aerial images. Fourth, the digital elevation model(DEM) produced with aerial image taken with an UAV can visually express the altitude and shape of the topography of the study site, so it can be used as data to predict the effects of topographical changes due to changes in rural space. Therefore, it is possible to utilize various results using the data included in the aerial image taken by the UAV. In this study, the superiority of images acquired by UAV was verified by comparison with existing images, and the effect of 3D mapping on rural space monitoring was visually analyzed. If various types of spatial data such as GIS analysis and topographic map production are collected and utilized using data that can be acquired by unmanned aerial vehicles, it is expected to be used as basic data for rural planning to maintain and preserve the rural environment.

Evaluation of Geospatial Information Construction Characteristics and Usability According to Type and Sensor of Unmanned Aerial Vehicle (무인항공기 종류 및 센서에 따른 공간정보 구축의 활용성 평가)

  • Chang, Si Hoon;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.555-562
    • /
    • 2021
  • Recently, in the field of geospatial information construction, unmanned aerial vehicles have been increasingly used because they enable rapid data acquisition and utilization. In this study, photogrammetry was performed using fixed-wing, rotary-wing, and VTOL (Vertical Take-Off and Landing) unmanned aerial vehicles, and geospatial information was constructed using two types of unmanned aerial vehicle LiDAR (Light Detection And Ranging) sensors. In addition, the accuracy was evaluated to present the utility of spatial information constructed through unmanned aerial photogrammetry and LiDAR. As a result of the accuracy evaluation, the orthographic image constructed through unmanned aerial photogrammetry showed accuracy within 2 cm. Considering that the GSD (Ground Sample Distance) of the constructed orthographic image is about 2 cm, the accuracy of the unmanned aerial photogrammetry results is judged to be within the GSD. The spatial information constructed through the unmanned aerial vehicle LiDAR showed accuracy within 6 cm in the height direction, and data on the ground was obtained in the vegetation area. DEM (Digital Elevation Model) using LiDAR data will be able to be used in various ways, such as construction work, urban planning, disaster prevention, and topographic analysis.

Analysis of Gangwon-do Coastline Changes Using Aerial Photograph Immediately after the Liberation (해방 직후 항공사진을 이용한 강원도 해안선 변화 분석)

  • Ahn, Seunghyo;Choi, Hyun;Kim, Gihong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.717-726
    • /
    • 2020
  • Social costs are increasing in Gangwon-do east coast due to coastal erosion. Long-term coastline change information is essential for analyzing this phenomenon. In this study, aerial photographs immediately after liberation are used for 1950's coastline extraction. The study area is from Sokcho Cheongho beach to Yangyang Seorak beach. The aerial photograph is geometrically corrected using DLT(Direct Linear Transformation) method to extract past coastline and compare it with present data. Coastal erosion and deposition areas are calculated in study area. Artificial structures such as harbors and breakwaters have caused changes in ocean currents and sediments from river estuaries. In most cases, the deposition occurred at the southern area of artificial structures and the erosion occurred on surrounding beaches. Coastline information extracted from past aerial photographs can be useful to provide information on long-term changes.

A study on aerial triangulation from multi-sensor imagery

  • Lee, Young-ran;Habib, Ayman;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.400-406
    • /
    • 2002
  • Recently, the enormous increase in the volume of remotely sensed data is being acquired by an ever-growing number of earth observation satellites. The combining of diversely sourced imagery together is an important requirement in many applications such as data fusion, city modeling and object recognition. Aerial triangulation is a procedure to reconstruct object space from imagery. However, since the different kinds of imagery have their own sensor model, characteristics, and resolution, the previous approach in aerial triangulation (or georeferencing) is performed on a sensor model separately. This study evaluated the advantages of aerial triangulation of large number of images from multi-sensors simultaneously. The incorporated multi-sensors are frame, push broom, and whisky broom cameras. The limits and problems of push-broom or whisky broom sensor models can be compensated by combined triangulation with frame imagery and vise versa. The reconstructed object space from multi-sensor triangulation is more accurate than that from a single model. Experiments conducted in this study show the more accurately reconstructed object space from multi-sensor triangulation.

  • PDF

A Study on the Analysis and Improvement of STANAG 4586 / MAVLink Protocol for Interoperability Improvement of UAS (UAS 상호운용성 향상을 위한 STANAG 4586과 MAVLink 프로토콜 비교분석 및 개선방안 연구)

  • Nam, Gyeongrae;Go, Jeonghwan;Kwon, Cheolhee;Jeong, Soyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.618-638
    • /
    • 2020
  • An unmanned aerial vehicle(UAV) refers to an aircraft that has all or part of its functions to autonomously fly by grasping the surrounding environment by remote control on the ground without a pilot on board. With the development of unmanned aerial technology, civil/military forces are developing unmanned aerial vehicles for various purposes. In order to control unmanned aerial vehicles from the ground, communication protocols between unmanned aerial vehicles and ground control equipment are required, and civil/military forces have developed and used a photocall for different purposes. In this study, the characteristics of the MAVLink protocol used in the private sector and the STANAG 4586 protocol used in the military are compared/analyzed in detail to find elements to complement each other and to draw improvement measures for protocol unification.