• Title/Summary/Keyword: adversarial network

Search Result 279, Processing Time 0.026 seconds

A Study on Image Creation and Modification Techniques Using Generative Adversarial Neural Networks (생성적 적대 신경망을 활용한 부분 위변조 이미지 생성에 관한 연구)

  • Song, Seong-Heon;Choi, Bong-Jun;Moon, M-Ikyeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.291-298
    • /
    • 2022
  • A generative adversarial network (GAN) is a network in which two internal neural networks (generative network and discriminant network) learn while competing with each other. The generator creates an image close to reality, and the delimiter is programmed to better discriminate the image of the constructor. This technology is being used in various ways to create, transform, and restore the entire image X into another image Y. This paper describes a method that can be forged into another object naturally, after extracting only a partial image from the original image. First, a new image is created through the previously trained DCGAN model, after extracting only a partial image from the original image. The original image goes through a process of naturally combining with, after re-styling it to match the texture and size of the original image using the overall style transfer technique. Through this study, the user can naturally add/transform the desired object image to a specific part of the original image, so it can be used as another field of application for creating fake images.

Anomaly Detection for User Action with Generative Adversarial Networks (적대적 생성 모델을 활용한 사용자 행위 이상 탐지 방법)

  • Choi, Nam woong;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.43-62
    • /
    • 2019
  • At one time, the anomaly detection sector dominated the method of determining whether there was an abnormality based on the statistics derived from specific data. This methodology was possible because the dimension of the data was simple in the past, so the classical statistical method could work effectively. However, as the characteristics of data have changed complexly in the era of big data, it has become more difficult to accurately analyze and predict the data that occurs throughout the industry in the conventional way. Therefore, SVM and Decision Tree based supervised learning algorithms were used. However, there is peculiarity that supervised learning based model can only accurately predict the test data, when the number of classes is equal to the number of normal classes and most of the data generated in the industry has unbalanced data class. Therefore, the predicted results are not always valid when supervised learning model is applied. In order to overcome these drawbacks, many studies now use the unsupervised learning-based model that is not influenced by class distribution, such as autoencoder or generative adversarial networks. In this paper, we propose a method to detect anomalies using generative adversarial networks. AnoGAN, introduced in the study of Thomas et al (2017), is a classification model that performs abnormal detection of medical images. It was composed of a Convolution Neural Net and was used in the field of detection. On the other hand, sequencing data abnormality detection using generative adversarial network is a lack of research papers compared to image data. Of course, in Li et al (2018), a study by Li et al (LSTM), a type of recurrent neural network, has proposed a model to classify the abnormities of numerical sequence data, but it has not been used for categorical sequence data, as well as feature matching method applied by salans et al.(2016). So it suggests that there are a number of studies to be tried on in the ideal classification of sequence data through a generative adversarial Network. In order to learn the sequence data, the structure of the generative adversarial networks is composed of LSTM, and the 2 stacked-LSTM of the generator is composed of 32-dim hidden unit layers and 64-dim hidden unit layers. The LSTM of the discriminator consists of 64-dim hidden unit layer were used. In the process of deriving abnormal scores from existing paper of Anomaly Detection for Sequence data, entropy values of probability of actual data are used in the process of deriving abnormal scores. but in this paper, as mentioned earlier, abnormal scores have been derived by using feature matching techniques. In addition, the process of optimizing latent variables was designed with LSTM to improve model performance. The modified form of generative adversarial model was more accurate in all experiments than the autoencoder in terms of precision and was approximately 7% higher in accuracy. In terms of Robustness, Generative adversarial networks also performed better than autoencoder. Because generative adversarial networks can learn data distribution from real categorical sequence data, Unaffected by a single normal data. But autoencoder is not. Result of Robustness test showed that he accuracy of the autocoder was 92%, the accuracy of the hostile neural network was 96%, and in terms of sensitivity, the autocoder was 40% and the hostile neural network was 51%. In this paper, experiments have also been conducted to show how much performance changes due to differences in the optimization structure of potential variables. As a result, the level of 1% was improved in terms of sensitivity. These results suggest that it presented a new perspective on optimizing latent variable that were relatively insignificant.

Adversarial-Mixup: Increasing Robustness to Out-of-Distribution Data and Reliability of Inference (적대적 데이터 혼합: 분포 외 데이터에 대한 강건성과 추론 결과에 대한 신뢰성 향상 방법)

  • Gwon, Kyungpil;Yo, Joonhyuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Detecting Out-of-Distribution (OOD) data is fundamentally required when Deep Neural Network (DNN) is applied to real-world AI such as autonomous driving. However, modern DNNs are quite vulnerable to the over-confidence problem even if the test data are far away from the trained data distribution. To solve the problem, this paper proposes a novel Adversarial-Mixup training method to let the DNN model be more robust by detecting OOD data effectively. Experimental results show that the proposed Adversarial-Mixup method improves the overall performance of OOD detection by 78% comparing with the State-of-the-Art methods. Furthermore, we show that the proposed method can alleviate the over-confidence problem by reducing the confidence score of OOD data than the previous methods, resulting in more reliable and robust DNNs.

High-Capacity Robust Image Steganography via Adversarial Network

  • Chen, Beijing;Wang, Jiaxin;Chen, Yingyue;Jin, Zilong;Shim, Hiuk Jae;Shi, Yun-Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.366-381
    • /
    • 2020
  • Steganography has been successfully employed in various applications, e.g., copyright control of materials, smart identity cards, video error correction during transmission, etc. Deep learning-based steganography models can hide information adaptively through network learning, and they draw much more attention. However, the capacity, security, and robustness of the existing deep learning-based steganography models are still not fully satisfactory. In this paper, three models for different cases, i.e., a basic model, a secure model, a secure and robust model, have been proposed for different cases. In the basic model, the functions of high-capacity secret information hiding and extraction have been realized through an encoding network and a decoding network respectively. The high-capacity steganography is implemented by hiding a secret image into a carrier image having the same resolution with the help of concat operations, InceptionBlock and convolutional layers. Moreover, the secret image is hidden into the channel B of carrier image only to resolve the problem of color distortion. In the secure model, to enhance the security of the basic model, a steganalysis network has been added into the basic model to form an adversarial network. In the secure and robust model, an attack network has been inserted into the secure model to improve its robustness further. The experimental results have demonstrated that the proposed secure model and the secure and robust model have an overall better performance than some existing high-capacity deep learning-based steganography models. The secure model performs best in invisibility and security. The secure and robust model is the most robust against some attacks.

Sound Enhancement with Generative Adversarial Network under Noise Conditions (잡음 환경에서 Generative Adversarial Network를 이용한 소리 음질 향상)

  • Choi, Yongju;Lee, Jonguk;Wang, Huasang;Park, Daihee;Chung, Yongwha
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.673-676
    • /
    • 2018
  • 4차 산업혁명이 도래하면서 정보 통신 기술 및 융합 기술의 발전에 힘입어 소리 데이터를 이용한 연구가 활발하게 진행되고 있다. 소리 데이터를 이용한 학술적 프로토타입 연구들을 실제 환경에서 운용하기 위해서는 소리 취득 시 발생하는 다양한 잡음 환경에서도 원시 데이터(raw data)에 근접한 정보를 취득할 수 있는 시스템의 강인함이 보장되어야 한다. 본 논문에서는 SEGAN(Speech Enhancement Generative Adversarial Network) 모델을 활용하여, 전처리 및 후처리 과정이 필요 없이 원시 데이터를 대상으로 하는 end-to-end 방식의 소리 음질 향상 시스템을 제안한다. 제안하는 시스템은, 축산업 분야의 돼지 호흡기 질병 소리 데이터를 이용하여 실험하였으며, 여러 가지 잡음 상황(인위적인 잡음, 실제 환경 잡음)에서 소리 음질이 개선됨을 실험적으로 검증하였다.

Night-to-Day Road Image Translation with Generative Adversarial Network for Driver Safety Enhancement (운전자 안정성 향상을 위한 Generative Adversarial Network 기반의 야간 도로 영상 변환 시스템)

  • Ahn, Namhyun;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.760-767
    • /
    • 2018
  • Advanced driver assistance system(ADAS) is a major technique in the intelligent vehicle field. The techniques for ADAS can be separated in two classes, i.e., methods that directly control the movement of vehicle and that indirectly provide convenience to driver. In this paper, we propose a novel system that gives a visual assistance to driver by translating a night road image to a day road image. We use the black box images capturing the front road view of vehicle as inputs. The black box images are cropped into three parts and simultaneously translated into day images by the proposed image translation module. Then, the translated images are recollected to original size. The experimental result shows that the proposed method generates realistic images and outperforms the conventional algorithms.

Voice Frequency Synthesis using VAW-GAN based Amplitude Scaling for Emotion Transformation

  • Kwon, Hye-Jeong;Kim, Min-Jeong;Baek, Ji-Won;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.713-725
    • /
    • 2022
  • Mostly, artificial intelligence does not show any definite change in emotions. For this reason, it is hard to demonstrate empathy in communication with humans. If frequency modification is applied to neutral emotions, or if a different emotional frequency is added to them, it is possible to develop artificial intelligence with emotions. This study proposes the emotion conversion using the Generative Adversarial Network (GAN) based voice frequency synthesis. The proposed method extracts a frequency from speech data of twenty-four actors and actresses. In other words, it extracts voice features of their different emotions, preserves linguistic features, and converts emotions only. After that, it generates a frequency in variational auto-encoding Wasserstein generative adversarial network (VAW-GAN) in order to make prosody and preserve linguistic information. That makes it possible to learn speech features in parallel. Finally, it corrects a frequency by employing Amplitude Scaling. With the use of the spectral conversion of logarithmic scale, it is converted into a frequency in consideration of human hearing features. Accordingly, the proposed technique provides the emotion conversion of speeches in order to express emotions in line with artificially generated voices or speeches.

PathGAN: Local path planning with attentive generative adversarial networks

  • Dooseop Choi;Seung-Jun Han;Kyoung-Wook Min;Jeongdan Choi
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.1004-1019
    • /
    • 2022
  • For autonomous driving without high-definition maps, we present a model capable of generating multiple plausible paths from egocentric images for autonomous vehicles. Our generative model comprises two neural networks: feature extraction network (FEN) and path generation network (PGN). The FEN extracts meaningful features from an egocentric image, whereas the PGN generates multiple paths from the features, given a driving intention and speed. To ensure that the paths generated are plausible and consistent with the intention, we introduce an attentive discriminator and train it with the PGN under a generative adversarial network framework. Furthermore, we devise an interaction model between the positions in the paths and the intentions hidden in the positions and design a novel PGN architecture that reflects the interaction model for improving the accuracy and diversity of the generated paths. Finally, we introduce ETRIDriving, a dataset for autonomous driving, in which the recorded sensor data are labeled with discrete high-level driving actions, and demonstrate the state-of-the-art performance of the proposed model on ETRIDriving in terms of accuracy and diversity.

Real-time prediction of dynamic irregularity and acceleration of HSR bridges using modified LSGAN and in-service train

  • Huile Li;Tianyu Wang;Huan Yan
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.501-516
    • /
    • 2023
  • Dynamic irregularity and acceleration of bridges subjected to high-speed trains provide crucial information for comprehensive evaluation of the health state of under-track structures. This paper proposes a novel approach for real-time estimation of vertical track dynamic irregularity and bridge acceleration using deep generative adversarial network (GAN) and vibration data from in-service train. The vehicle-body and bogie acceleration responses are correlated with the two target variables by modeling train-bridge interaction (TBI) through least squares generative adversarial network (LSGAN). To realize supervised learning required in the present task, the conventional LSGAN is modified by implementing new loss function and linear activation function. The proposed approach can offer pointwise and accurate estimates of track dynamic irregularity and bridge acceleration, allowing frequent inspection of high-speed railway (HSR) bridges in an economical way. Thanks to its applicability in scenarios of high noise level and critical resonance condition, the proposed approach has a promising prospect in engineering applications.

GAN-based Color Palette Extraction System by Chroma Fine-tuning with Reinforcement Learning

  • Kim, Sanghyuk;Kang, Suk-Ju
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.125-129
    • /
    • 2021
  • As the interest of deep learning, techniques to control the color of images in image processing field are evolving together. However, there is no clear standard for color, and it is not easy to find a way to represent only the color itself like the color-palette. In this paper, we propose a novel color palette extraction system by chroma fine-tuning with reinforcement learning. It helps to recognize the color combination to represent an input image. First, we use RGBY images to create feature maps by transferring the backbone network with well-trained model-weight which is verified at super resolution convolutional neural networks. Second, feature maps are trained to 3 fully connected layers for the color-palette generation with a generative adversarial network (GAN). Third, we use the reinforcement learning method which only changes chroma information of the GAN-output by slightly moving each Y component of YCbCr color gamut of pixel values up and down. The proposed method outperforms existing color palette extraction methods as given the accuracy of 0.9140.