• Title/Summary/Keyword: adversarial network

Search Result 279, Processing Time 0.023 seconds

Improved CycleGAN for underwater ship engine audio translation (수중 선박엔진 음향 변환을 위한 향상된 CycleGAN 알고리즘)

  • Ashraf, Hina;Jeong, Yoon-Sang;Lee, Chong Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.292-302
    • /
    • 2020
  • Machine learning algorithms have made immense contributions in various fields including sonar and radar applications. Recently developed Cycle-Consistency Generative Adversarial Network (CycleGAN), a variant of GAN has been successfully used for unpaired image-to-image translation. We present a modified CycleGAN for translation of underwater ship engine sounds with high perceptual quality. The proposed network is composed of an improved generator model trained to translate underwater audio from one vessel type to other, an improved discriminator to identify the data as real or fake and a modified cycle-consistency loss function. The quantitative and qualitative analysis of the proposed CycleGAN are performed on publicly available underwater dataset ShipsEar by evaluating and comparing Mel-cepstral distortion, pitch contour matching, nearest neighbor comparison and mean opinion score with existing algorithms. The analysis results of the proposed network demonstrate the effectiveness of the proposed network.

Rapid Misclassification Sample Generation Attack on Deep Neural Network (딥뉴럴네트워크 상에 신속한 오인식 샘플 생성 공격)

  • Kwon, Hyun;Park, Sangjun;Kim, Yongchul
    • Convergence Security Journal
    • /
    • v.20 no.2
    • /
    • pp.111-121
    • /
    • 2020
  • Deep neural networks (DNNs) provide good performance for machine learning tasks such as image recognition and object recognition. However, DNNs are vulnerable to an adversarial example. An adversarial example is an attack sample that causes the neural network to recognize it incorrectly by adding minimal noise to the original sample. However, the disadvantage is that it takes a long time to generate such an adversarial example. Therefore, in some cases, an attack may be necessary that quickly causes the neural network to recognize it incorrectly. In this paper, we propose a fast misclassification sample that can rapidly attack neural networks. The proposed method does not consider the distortion of the original sample when adding noise. We used MNIST and CIFAR10 as experimental data and Tensorflow as a machine learning library. Experimental results show that the fast misclassification sample generated by the proposed method can be generated with 50% and 80% reduced number of iterations for MNIST and CIFAR10, respectively, compared to the conventional Carlini method, and has 100% attack rate.

A Study on the Emotional Text Generation using Generative Adversarial Network (Generative Adversarial Network 학습을 통한 감정 텍스트 생성에 관한 연구)

  • Kim, Woo-seong;Kim, Hyeoncheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.380-382
    • /
    • 2019
  • GAN(Generative Adversarial Network)은 정해진 학습 데이터에서 정해진 생성자와 구분자가 서로 각각에게 적대적인 관계를 유지하며 동시에 서로에게 생산적인 관계를 유지하며 가능한 긍정적인 영향을 주며 학습하는 기계학습 분야이다. 전통적인 문장 생성은 단어의 통계적 분포를 기반으로 한 마르코프 결정 과정(Markov Decision Process)과 순환적 신경 모델(Recurrent Neural Network)을 사용하여 학습시킨다. 이러한 방법은 문장 생성과 같은 연속된 데이터를 기반으로 한 모델들의 표준 모델이 되었다. GAN은 표준모델이 존재하는 해당 분야에 새로운 모델로써 다양한 시도가 시도되고 있다. 하지만 이러한 모델의 시도에도 불구하고, 지금까지 해결하지 못하고 있는 다양한 문제점이 존재한다. 이 논문에서는 다음과 같은 두 가지 문제점에 집중하고자 한다. 첫째, Sequential 한 데이터 처리에 어려움을 겪는다. 둘째, 무작위로 생성하기 때문에 사용자가 원하는 데이터만 출력되지 않는다. 본 논문에서는 이러한 문제점을 해결하고자, 부분적인 정답 제공을 통한 조건별 생산적 적대 생성망을 설계하여 이 방법을 사용하여 해결하였다. 첫째, Sequence to Sequence 모델을 도입하여 Sequential한 데이터를 처리할 수 있도록 하여 원시적인 텍스트를 생성할 수 있게 하였다. 둘째, 부분적인 정답 제공을 통하여 문장의 생성 조건을 구분하였다. 결과적으로, 제안하는 기법들로 원시적인 감정 텍스트를 생성할 수 있었다.

Image generation and classification using GAN-based Semi Supervised Learning (GAN기반의 Semi Supervised Learning을 활용한 이미지 생성 및 분류)

  • Doyoon Jung;Gwangmi Choi;NamHo Kim
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.27-35
    • /
    • 2024
  • This study deals with a method of combining image generation using Semi Supervised Learning based on GAN (Generative Adversarial Network) and image classification using ResNet50. Through this, a new approach was proposed to obtain more accurate and diverse results by integrating image generation and classification. The generator and discriminator are trained to distinguish generated images from actual images, and image classification is performed using ResNet50. In the experimental results, it was confirmed that the quality of the generated images changes depending on the epoch, and through this, we aim to improve the accuracy of industrial accident prediction. In addition, we would like to present an efficient method to improve the quality of image generation and increase the accuracy of image classification through the combination of GAN and ResNet50.

A Novel Cross Channel Self-Attention based Approach for Facial Attribute Editing

  • Xu, Meng;Jin, Rize;Lu, Liangfu;Chung, Tae-Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2115-2127
    • /
    • 2021
  • Although significant progress has been made in synthesizing visually realistic face images by Generative Adversarial Networks (GANs), there still lacks effective approaches to provide fine-grained control over the generation process for semantic facial attribute editing. In this work, we propose a novel cross channel self-attention based generative adversarial network (CCA-GAN), which weights the importance of multiple channels of features and archives pixel-level feature alignment and conversion, to reduce the impact on irrelevant attributes while editing the target attributes. Evaluation results show that CCA-GAN outperforms state-of-the-art models on the CelebA dataset, reducing Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) by 15~28% and 25~100%, respectively. Furthermore, visualization of generated samples confirms the effect of disentanglement of the proposed model.

Discriminative Manifold Learning Network using Adversarial Examples for Image Classification

  • Zhang, Yuan;Shi, Biming
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2099-2106
    • /
    • 2018
  • This study presents a novel approach of discriminative feature vectors based on manifold learning using nonlinear dimension reduction (DR) technique to improve loss function, and combine with the Adversarial examples to regularize the object function for image classification. The traditional convolutional neural networks (CNN) with many new regularization approach has been successfully used for image classification tasks, and it achieved good results, hence it costs a lot of Calculated spacing and timing. Significantly, distrinct from traditional CNN, we discriminate the feature vectors for objects without empirically-tuned parameter, these Discriminative features intend to remain the lower-dimensional relationship corresponding high-dimension manifold after projecting the image feature vectors from high-dimension to lower-dimension, and we optimize the constrains of the preserving local features based on manifold, which narrow the mapped feature information from the same class and push different class away. Using Adversarial examples, improved loss function with additional regularization term intends to boost the Robustness and generalization of neural network. experimental results indicate that the approach based on discriminative feature of manifold learning is not only valid, but also more efficient in image classification tasks. Furthermore, the proposed approach achieves competitive classification performances for three benchmark datasets : MNIST, CIFAR-10, SVHN.

Deep Learning-based Single Image Generative Adversarial Network: Performance Comparison and Trends (딥러닝 기반 단일 이미지 생성적 적대 신경망 기법 비교 분석)

  • Jeong, Seong-Hun;Kong, Kyeongbo
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • Generative adversarial networks(GANs) have demonstrated remarkable success in image synthesis. However, since GANs show instability in the training stage on large datasets, it is difficult to apply to various application fields. A single image GAN is a field that generates various images by learning the internal distribution of a single image. In this paper, we investigate five Single Image GAN: SinGAN, ConSinGAN, InGAN, DeepSIM, and One-Shot GAN. We compare the performance of each model and analyze the pros and cons of a single image GAN.

GAN Based Adversarial CAN Frame Generation Method for Physical Attack Evading Intrusion Detection System (Intrusion Detection System을 회피하고 Physical Attack을 하기 위한 GAN 기반 적대적 CAN 프레임 생성방법)

  • Kim, Dowan;Choi, Daeseon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1279-1290
    • /
    • 2021
  • As vehicle technology has grown, autonomous driving that does not require driver intervention has developed. Accordingly, CAN security, an network of in-vehicles, has also become important. CAN shows vulnerabilities in hacking attacks, and machine learning-based IDS is introduced to detect these attacks. However, despite its high accuracy, machine learning showed vulnerability against adversarial examples. In this paper, we propose a adversarial CAN frame generation method to avoid IDS by adding noise to feature and proceeding with feature selection and re-packet for physical attack of the vehicle. We check how well the adversarial CAN frame avoids IDS through experiments for each case that adversarial CAN frame generated by all feature modulation, modulation after feature selection, preprocessing after re-packet.

Image Restoration using GAN (적대적 생성신경망을 이용한 손상된 이미지의 복원)

  • Moon, ChanKyoo;Uh, YoungJung;Byun, Hyeran
    • Journal of Broadcast Engineering
    • /
    • v.23 no.4
    • /
    • pp.503-510
    • /
    • 2018
  • Restoring of damaged images is a fundamental problem that was attempted before digital image processing technology appeared. Various algorithms for reconstructing damaged images have been introduced. However, the results show inferior restoration results compared with manual restoration. Recent developments of DNN (Deep Neural Network) have introduced various studies that apply it to image restoration. However, if the wide area is damaged, it can not be solved by a general interpolation method. In this case, it is necessary to reconstruct the damaged area through contextual information of surrounding images. In this paper, we propose an image restoration network using a generative adversarial network (GAN). The proposed system consists of image generation network and discriminator network. The proposed network is verified through experiments that it is possible to recover not only the natural image but also the texture of the original image through the inference of the damaged area in restoring various types of images.

Reverting Gene Expression Pattern of Cancer into Normal-Like Using Cycle-Consistent Adversarial Network

  • Lee, Chan-hee;Ahn, TaeJin
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.275-283
    • /
    • 2018
  • Cancer show distinct pattern of gene expression when it is compared to normal. This difference results malignant characteristic of cancer. Many cancer drugs are targeting this difference so that it can selectively kill cancer cells. One of the recent demand for personalized treating cancer is retrieving normal tissue from a patient so that the gene expression difference between cancer and normal be assessed. However, in most clinical situation it is hard to retrieve normal tissue from a patient. This is because biopsy of normal tissues may cause damage to the organ function or a risk of infection or side effect what a patient to take. Thus, there is a challenge to estimate normal cell's gene expression where cancers are originated from without taking additional biopsy. In this paper, we propose in-silico based prediction of normal cell's gene expression from gene expression data of a tumor sample. We call this challenge as reverting the cancer into normal. We divided this challenge into two parts. The first part is making a generator that is able to fool a pretrained discriminator. Pretrained discriminator is from the training of public data (9,601 cancers, 7,240 normals) which shows 0.997 of accuracy to discriminate if a given gene expression pattern is cancer or normal. Deceiving this pretrained discriminator means our method is capable of generating very normal-like gene expression data. The second part of the challenge is to address whether generated normal is similar to true reverse form of the input cancer data. We used, cycle-consistent adversarial networks to approach our challenges, since this network is capable of translating one domain to the other while maintaining original domain's feature and at the same time adding the new domain's feature. We evaluated that, if we put cancer data into a cycle-consistent adversarial network, it could retain most of the information from the input (cancer) and at the same time change the data into normal. We also evaluated if this generated gene expression of normal tissue would be the biological reverse form of the gene expression of cancer used as an input.