References
- J. Schmidhuber, ''Deep learning in neural networks: An overview,'' Neural Netw., vol. 61, pp. 85-117, Jan. 2015. https://doi.org/10.1016/j.neunet.2014.09.003
- K. Simonyan and A. Zisserman, ''Very deep convolutional networks for large-scale image recognition,'' in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA, May 2015. [Online]. Available: http://arxiv.org/abs/1409.1556
- Sun, Xudong, Pengcheng Wu, and Steven CH Hoi. "Face detection using deep learning: An improved faster RCNN approach." Neurocomputing 299 (2018): 42-50. https://doi.org/10.1016/j.neucom.2018.03.030
- G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-R. M. N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, ''Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups,'' IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012. https://doi.org/10.1109/MSP.2012.2205597
- C. Szegedy,W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus, ''Intriguing properties of neural networks,'' in Proc. 2nd Int. Conf. Learn. Represent. (ICLR), Banff, AB, Canada, Apr. 2014.
- N. Carlini and D. Wagner, ''Towards evaluating the robustness of neural networks,'' in Proc. IEEE Symp. Secur. Privacy (SP), May 2017, pp. 39-57.
- Y. LeCun, C. Cortes, and C. J. Burges. (2010). Mnist Handwritten Digit Database. AT&T Labs. [Online]. Available: http://yann.lecun.com/exdb/mnist
- A. Krizhevsky, V. Nair, and G. Hinton. (2014). The Cifar-10 Dataset. http://www.cs.toronto.ed/kriz/cifar.html
- Barreno M, Nelson B, Joseph AD, Tygar J. The security of machine learning. Mach Learn 2010; 81(2):121-48. https://doi.org/10.1007/s10994-010-5188-5
- S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, ''DeepFool: A simple and accurate method to fool deep neural networks,'' in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2574-2582.
- Y. Liu, X. Chen, C. Liu, and D. Song, ''Delving into transferable adversarial examples and black-box attacks,'' in Proc. 5th Int. Conf. Learn. Represent. (ICLR), Toulon, France, Apr. 2017.
- Kwon, Hyun, et al. "Advanced ensemble adversarial example on unknown deep neural network classifiers." IEICE TRANSACTIONS on Information and Systems 101.10 (2018):2485-2500. https://doi.org/10.1587/transinf.2018edp7073
- A. Kurakin, I. J. Goodfellow, and S. Bengio, ''Adversarial examples in the physical world,'' in Proc. 5th Int. Conf. Learn. Represent. (ICLR), Toulon, France, Apr. 2017.
- N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, ''The limitations of deep learning in adversarial settings,'' in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), Mar. 2016, pp. 372-387.
- Kwon, Hyun, et al. "Friend-safe evasion attack: An adversarial example that is correctly recognized by a friendly classifier." Computers & Security 78 (2018): 380-397. https://doi.org/10.1016/j.cose.2018.07.015
- Kwon, Hyun, et al, "Selective Audio Adversarial Example in Evasion Attack on Speech Recognition System ", IEEE Transactions on Information Forensics & Security, 2019. DOI:10.1109/TIFS.2019.2925452
- Kwon, Hyun, et al. "Multi-targeted adversarial example in evasion attack on deep neural network." IEEE Access 6 (2018): 46084-46096. https://doi.org/10.1109/access.2018.2866197
- Kwon, Hyun, et al. "Random untargeted adversarial example on deep neural network." Symmetry 10.12 (2018): 738. https://doi.org/10.3390/sym10120738
- Kwon, Hyun, et al. "Selective Untargeted Evasion Attack: An Adversarial Example That Will Not Be Classified as Certain Avoided Classes." IEEE Access 7 (2019):73493-73503. https://doi.org/10.1109/access.2019.2920410
- Su, Jiawei, Danilo Vasconcellos Vargas, and Kouichi Sakurai. "One pixel attack for fooling deep neural networks." IEEE Transactions on Evolutionary Computation (2019).
- Kwon, Hyun, Hyunsoo Yoon, and Daeseon Choi. "Restricted Evasion Attack: Generation of Restricted-Area Adversarial Example." IEEE Access 7 (2019): 60908-60919. https://doi.org/10.1109/access.2019.2915971
- M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, and M. Isard, ''TensorFlow: A system for largescale machine learning,'' in Proc. OSDI, vol. 16, 2016, pp. 265-283
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ''Gradient-based learning applied to document recognition,'' Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998. https://doi.org/10.1109/5.726791
- I. Goodfellow, J. Shlens, and C. Szegedy, "Expl aining and harnessing adver sarial examples," in International Conference on Learning Repres entations, 2015.
- N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, "Distillation as a defense to advers arial perturbations against deep neural networks," in Security and Privacy (SP), 2016 IEEE Symposium on, pp. 582-597, IEEE, 2016.
- A. Fawzi, O. Fawzi, and P. Frossard, "Analysi s of classifiers' robustness to aversarial pertur bations," Machine Learning, pp. 1-28, 2015.
- Jin, Guoqing, et al. "APE-GAN: Adversarial pe rturbation elimination with GAN." ICASSP 20 19-2019 IEEE International Conference on Aco ustics, Speech and Signal Processing (ICASS P). IEEE, 2019.