Acknowledgement
이 논문은 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 지역지능화혁신인재양성사업 (IITP-2024-00156287, 100%)의 연구결과로 수행되었음.
References
- 한국산업인력공단 홍보센터 - 중대재해 막아주는 AI가 뜬다(2023). https://webzine.hrdkorea.or.kr/section/webzine/view?id=12070 (accessed Feb., 13, 2024).
- 조영주, 배강민, & 박종열, "GAN 적대적 생성 신경망과 이미지 생성 및 변환 기술 동향, " [ETRI] 전자통신동향분석, 제35권, 제4호, 91-102쪽, 2020년
- 이윤선, 김연욱, 박지수, 오승진, 박준형, & 최진, "GAN 을 활용한 데이터 생성 연구 동향, " 한국항공우주학회 학술발표회 초록집, 312-313쪽, 2023년
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y., "Generative adversarial nets." Advances in neural information processing systems, vol. 27, 2014.
- Rasmus, A., Berglund, M., Honkala, M., Valpola, H., & Raiko, T., "Virtual adversarial training: a Regularization method for supervised and semi-supervised learning," IEEE transactions on pattern analysis and machine intelligence, vol. 41, no. 8, pp. 1979-1993. 2018.
- Miyato, T., Maeda, S. I., Koyama, M., & Ishii, S., "Semi-supervised learning with ladder networks," Advances in neural information processing systems, vol. 28, 2015.
- Berthelot, D., Carlini, N., Goodfellow, I., Papemot, N., Oliver, A., & Raffel, C. A., "Mixmatch: A holistic approach to semi-supervised learning," Advances in neural information processing systems, vol. 32, 2019.
- He, K., Zhang, X., Ren, S., & Sun, J., "Deep residual learning for image recognition," In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016.
- He, K., Zhang, X., Ren, S., & Sun, J., ''Identity mappings in deep residual networks," Springer International Publishing, pp. 630-645, Sep. 2016.
- You, C., Li, G., Zhang, Y., Zhang, X., Shan, H., Li, M., ... & Wang, G, "CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE)," IEEE transactions on medical imaging, vol. 39, no. 1, pp. 188-203, 2019.
- Ben-Gohen, A., Klang, E., Raskin, S. P., Soffer, S., Ben-Haim, S., Konen, E., ... & Greenspan, H, "Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection," Engineering Applications of Artificial Intelligence, vol. 78, pp. 186-194, 2019.