International journal of advanced smart convergence
/
제13권2호
/
pp.69-79
/
2024
AI technology is a central focus of the 4th Industrial Revolution. However, compared to some existing non-artificial intelligence technologies, new AI adversarial attacks have become possible in learning data management, input data management, and other areas. These attacks, which exploit weaknesses in AI encryption technology, are not only emerging as social issues but are also expected to have a significant negative impact on existing IT and convergence industries. This paper examines various cases of AI adversarial attacks developed recently, categorizes them into five groups, and provides a foundational document for developing security guidelines to verify their safety. The findings of this study confirm AI adversarial attacks that can be applied to various types of cryptographic modules (such as hardware cryptographic modules, software cryptographic modules, firmware cryptographic modules, hybrid software cryptographic modules, hybrid firmware cryptographic modules, etc.) incorporating AI technology. The aim is to offer a foundational document for the development of standardized protocols, believed to play a crucial role in rejuvenating the information security industry in the future.
Journal of information and communication convergence engineering
/
제16권3호
/
pp.148-152
/
2018
Adversarial attacks on artificial intelligence (AI) systems use adversarial examples to achieve the attack objective. Adversarial examples consist of slightly changed test data, causing AI systems to make false decisions on these examples. When used as a tool for attacking AI systems, this can lead to disastrous results. In this paper, we propose an ensemble of degraded convolutional neural network (CNN) modules, which is more robust to adversarial attacks than conventional CNNs. Each module is trained on degraded images. During testing, images are degraded using various degradation methods, and a final decision is made utilizing a one-hot encoding vector that is obtained by summing up all the output vectors of the modules. Experimental results show that the proposed ensemble network is more resilient to adversarial attacks than conventional networks, while the accuracies for normal images are similar.
오늘날 AI(Artificial Intelligence) 기술은 보안 분야를 비롯하여 다양한 분야에 도입됨에 따라 기술의 발전이 가속화되고 있다. 하지만 AI 기술의 발전과 더불어 악성 행위 탐지를 교묘하게 우회하는 공격 기법들도 함께 발전되고 있다. 이러한 공격 기법 중 AI 모델의 분류 과정에서 입력값의 미세한 조정을 통해 오 분류와 신뢰도 하락을 유도하는 Adversarial attack이 등장하였다. 앞으로 등장할 공격들은 공격자가 새로이 공격을 생성하는 것이 아닌, Adversarial attack처럼 기존에 생성된 공격에 약간의 변형을 주어 AI 모델의 탐지체계를 회피하는 방식이다. 이러한 악성코드의 변종에도 대응이 가능한 견고한 모델을 만들어야 한다. 본 논문에서는 AI 모델의 Robustness 향상을 위한 효율적인 Adversarial attack 생성 기법으로 2가지 기법을 제안한다. 제안하는 기법은 XAI 기법을 활용한 XAI based attack 기법과 모델의 결정 경계 탐색을 통한 Reference based attack이다. 이후 성능 검증을 위해 악성코드 데이터 셋을 통해 분류 모델을 구축하여 기존의 Adversarial attack 중 하나인 PGD attack과의 성능 비교를 하였다. 생성 속도 측면에서 기존 20분이 소요되는 PGD attack에 비하여 XAI based attack과 Reference based attack이 각각 0.35초, 0.47초 소요되어 매우 빠른 속도를 보이며, 특히 Reference based attack의 경우 생성률이 97.7%로 기존 PGD attack의 생성률인 75.5%에 비해 높은 성공률을 보이는 것을 확인하였다. 따라서 제안한 기법을 통해 더욱 효율적인 Adversarial attack이 가능하며, 이후 견고한 AI 모델을 구축하기 위한 연구에 기여 할 수 있을 것으로 기대한다.
최근 심층 신경망을 이용한 강화학습 모델들이 자율주행, 스마트 팩토리, 홈 네트워크 등 다양한 첨단 산업 분야에 사용되고 있으나 적대적 공격(adversarial attacks)에 취약하다는 것이 밝혀졌다. 본 논문에서는 강화학습 기반의 딥러닝 모델인 DQN과 PPO를 자율주행 가상환경 HighwayEnv에 적용하여 FGSM(Fast Gradient Sign Method), BIM(Basic Iterative Method), PGD(Projected Gradient Descent) 그리고 CW(Carlini and Wagner)을 이용하여 적대적 공격을 수행하였다. 적대적 공격에 대응하기 위해 양방향 필터(bilateral filter) 알고리즘을 사용하여 적대적 이미지의 잡음을 제거함으로써 강화학습 기반의 딥러닝 모델들이 정상적으로 작동할 수 있는 방법을 제안하였다. 그리고 HighwayEnv 환경에서 에피소드 수행 길이(episode during)의 평균과 에이전트가 획득한 보상(episode reward)의 평균을 성능평가 지표로 사용하여 공격의 성능을 평가하였다. 실험 결과 양방향 필터를 통해 적대적 이미지의 잡음을 제거한 결과, 적대적 공격이 수행되기 이전의 성능을 유지할 수 있음을 보였다.
딥러닝 분류 모델에 대한 공격 중 하나인 적대적 공격은 입력 데이터에 인간이 구별할 수 없는 섭동을 추가하여 딥러닝 분류 모델이 잘못 분류하도록 만드는 공격이며, 다양한 적대적 공격 알고리즘이 존재한다. 이에 따라 적대적 데이터를 탐지하는 연구는 많이 진행되었으나 적대적 데이터가 어떤 적대적 공격 알고리즘에 의해 생성되었는지 분류하는 연구는 매우 적게 진행되었다. 적대적 공격을 분류할 수 있다면, 공격 간의 차이를 분석하여 더욱 견고한 딥러닝 분류 모델을 구축할 수 있을 것이다. 본 논문에서는 공격 대상 딥러닝 모델이 예측하는 클래스를 기반으로 은닉층의 출력값에서 특징을 추출하고 추출된 특징을 입력으로 하는 랜덤 포레스트 분류 모델을 구축하여 적대적 공격을 탐지 및 분류하는 모델을 제안한다. 실험 결과 제안한 모델은 최신의 적대적 공격 탐지 및 분류 모델보다 정상 데이터의 경우 3.02%, 적대적 데이터의 경우 0.80% 높은 정확도를 보였으며, 기존 연구에서 분류하지 않았던 새로운 공격을 분류한다.
인공지능 기술의 오작동을 유도하는 적대적 공격은 다양한 도메인과 모델에 적용 가능하며, 성능이 높은 SOTA(State-of-the-Art) 모델의 성능도 손쉽게 저해 시킬 수 있다. 이에 대처하기 위해 적대적 방어 기술들이 개발되고 있지만, 명확한 한계점으로 인해 활용이 제한된다. 그 결과, 특정 분야에서 인공지능 기술의 도입 뿐만 아니라 고도화 연구도 지체되고 있다. 해당 문제를 해결하기 위해, 본 논문에서는 적대적 공격의 손실 함수 업데이트 방향의 부호를 바꿔 새로운 개념의 적대적 데이터를 소개한다. 본 연구에서 소개한 역방향 적대적 데이터를 데이터 오염 및 적대적 훈련 환경에 적용하여 실험을 진행한 결과, 모델의 성능을 최대 72% 낮추고 9개 환경 중 6개 환경에서 강건성 향상에 가장 효율적임을 입증했다. 결과적으로, 제시한 적대적 데이터는 적대적 공격과 방어 기술의 연구 확장을 유도할 수 있으며, 더 나아가 방어 기술 개발의 고도화를 촉진할 수 있어 AI의 안전한 도입에 기여한다.
오늘날 AI(Artificial Intelligence) 기술은 악성코드 분야를 비롯하여 다양한 분야에서 광범위하게 연구되고 있다. 중요한 의사결정 및 자원을 보호하는 역할에 AI 시스템을 도입하기 위해서는 신뢰할 수 있는 AI 모델이어야 한다. 학습 데이터셋에 의존적인 AI 모델은 새로운 공격에 대해서도 견고한지 확인이 필요하다. 공격자는 악성코드를 새로 생성하기보단, 기존에 탐지되었던 악성코드의 변종을 대량 생산하여 공격에 성공하는 악성코드를 탐색다. AI 모델의 Misclassification을 유도하는 Adversarial attack과 같이 대부분의 공격은 기존 공격에 약간에 변형을 가해 만든 공격들이다. 이러한 변종에도 대응 가능한 Robust한 모델이 필요하며, AI 평가지표로 많이 사용되는 Accuracy, Recall 등으로는 모델의 Robustness 수준을 측정할 수 없다. 본 논문에서는 Adversarial attack 중 하나인 C&W attack을 기반으로 Adversarial sample을 생성하여 Robustness 수준을 측정하고 Adversarial training 을 통해 Robustness 수준을 개선하는 방법을 실험한다. 본 연구의 악성코드 데이터셋 기반 실험을 통해 악성코드 분야에서 해당 제안 방법의 한계 및 가능성을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권4호
/
pp.1538-1552
/
2021
Machine learning models are vulnerable to adversarial examples generated by adding a deliberately designed perturbation to a benign sample. Particularly, for automatic speech recognition (ASR) system, a benign audio which sounds normal could be decoded as a harmful command due to potential adversarial attacks. In this paper, we focus on the countermeasures against audio adversarial examples. By analyzing the characteristics of ASR systems, we find that frame offsets with silence clip appended at the beginning of an audio can degenerate adversarial perturbations to normal noise. For various scenarios, we exploit frame offsets by different strategies such as defending, detecting and hybrid strategy. Compared with the previous methods, our proposed method can defense audio adversarial example in a simpler, more generic and efficient way. Evaluated on three state-of-the-arts adversarial attacks against different ASR systems respectively, the experimental results demonstrate that the proposed method can effectively improve the robustness of ASR systems.
Recently, infrared object detection(IOD) has been extensively studied due to the rapid growth of deep neural networks(DNN). Adversarial attacks using imperceptible perturbation can dramatically deteriorate the performance of DNN. However, most adversarial attack works are focused on visible image recognition(VIR), and there are few methods for IOD. We propose deep learning-based adversarial attacks for IOD by expanding several state-of-the-art adversarial attacks for VIR. We effectively validate our claim through comprehensive experiments on two challenging IOD datasets, including FLIR and MSOD.
본 논문에서는 영상 데이터에 대한 적대적 공격으로부터 생성된 적대적 예제로 인하여 발생할 수 있는 딥러닝 시스템의 오분류를 방어하기 위한 방법으로 분류기의 입력 영상에 백색 잡음을 가산하는 방법을 제안하였다. 제안된 방법은 적대적이든 적대적이지 않던 구분하지 않고 분류기의 입력 영상에 백색 잡음을 더하여 적대적 예제가 분류기에서 올바른 출력을 발생할 수 있도록 유도하는 것이다. 제안한 방법은 FGSM 공격, BIM 공격 및 CW 공격으로 생성된 적대적 예제에 대하여 서로 다른 레이어 수를 갖는 Resnet 모델에 적용하고 결과를 고찰하였다. 백색 잡음의 가산된 데이터의 경우 모든 Resnet 모델에서 인식률이 향상되었음을 관찰할 수 있다. 제안된 방법은 단순히 백색 잡음을 경험적인 방법으로 가산하고 결과를 관찰하였으나 에 대한 엄밀한 분석이 추가되는 경우 기존의 적대적 훈련 방법과 같이 비용과 시간이 많이 소요되는 적대적 공격에 대한 방어 기술을 제공할 수 있을 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.