Acknowledgement
본 논문은 2024년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력 기반 지역혁신 사업의 결과입니다. (No. 2021RIS-004)
References
- R. S. Sutton and A. G. Barto. "Reinforcement Learning: An Introduction," 2nd ed. MIT Press, 2018.
- Y. C. Lin, Z.W. Hong, Y. H. Liao, M. L. Shih, M. Y. Liu, and M. Sun, "Tactics of adversarial attack on deep reinforcement learning agents," in Proc. Int. Joint Conf. Artif. Intell. (IJCAI), 2017, pp. 3756-3762
- S. S. Zheng, Y. Song, T. Leung and I. Goodfellow, "Improving the robustness of deep neural networks via stability training," IEEE Conference on Computer Vision and Pattern Recognition(CVPR'16), pp. 4480-4488, 2016.
- W. Zhao, S. Alwidian and Q. H. Mahmoud, "Adversarial Training Methods for Deep Learning: A Systematic Review," Journal of Algorithms, Vol. 15, Issue 8(283), 2022.
- W. Xu, D. Evans, and Y. Qi, "Feature squeezing:Detecting adversarial examples in deep neural networks," Network and Distributed System-Security Symposium(NDSS'18), 2018.
- S. L. Yin., X. L. Zhang, and L. Y. Zuo, "Defending against adversarial attacks using spherical sampling-based variational auto-ender", Neurocomputing, pp. 1-10, 2022.
- X. Feng, Y. Xie. , M. Ye, X. Tang, and B. Yuan. "Fake Gradient: A Security and Privacy Protection Framework for CNN-based Image Classification," In Proc ACM, pp. 5510-5518, 2021.
- Leurent, E.: An environment for auton omous driving decisionmaking,: https://github.com/eleurent/highway-env,last accessed 2018.
- I. J. Goodfellow, J. Shelns, and C. zegedy, "Explaining and harnessing dversarial examples," In International Conference on Learning Representations, pp. 1-11, 2015.
- Kurakin, A., Goodfellow. I., and Bengio. S.: Adversarial examples in the physical world. In: Int. Conf. Learning Representations, pp. 1-14, 2018.
- A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, "Towards deep learning models resistant to adversarial attacks," In International Conference on Learning Representations, 2018.
- N. Carlini and D. Wagner, "Towards evaluating the robustness of neural networks," In IEEE symposium on scurity and privacy, pp. 39-57, 2017.
- S. Paris, F. Durand, "A fast approximation of the bilateral filter using a signal processing approach", International Journal of Computer Vision, Vol. 81, No. 1, pp. 24-52, Jan 2009.
- Xu. Long and N. H. Kim, "An Improved Adaptive Median Filter for Impulse Noise Removal", Journal of KIICE, Vol. 17, No. 4, pp. 989-995, April 2013.
- M. Elad, "On the origin of the bilateral filter and ways to improve it," IEEE Trans. Image Processing, Vol. 11, No. 10, pp. 1141-1151, October 2002.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, "Humanlevel control through deep reinforcement learning," Nature, vol. 581, no. 7549, pp. 529-533, 2015.
- J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, "Proximal policy optimization algorithms," Jul. 2017.
- I. J. Goodfellow, J. Shlens, and C. Szegedy, " Explaining and harnessing adversarial examples," in Proc ICLR'15, pp. 1-11, 2015.
- M. Laurens and H. Geoffrey, "Visualizing Data using t-SNE," Journal of Machine Learning Research pp. 2579-2605, 2018.