• Title/Summary/Keyword: advanced vehicle

Search Result 1,335, Processing Time 0.031 seconds

A Study of Dynamic Modeling of a Magnetic Levitation Vehicle (자기부상열차의 동적 모델링 연구)

  • 한형석;조홍재;김동성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.160-166
    • /
    • 2003
  • Interest in advanced vehicles results in correspondingly increased interest in modeling and simulation of the dynamic behavior of Maglev-type vehicle systems. DADS is a program especially suited for the analysis of multibody mechanical systems. This paper demonstrates the application of DADS to the dynamic modeling and simulation of such advanced vehicles. A brief description is made of the modeling requirements of magnetically levitated systems, along with a summary of some of the related capabilities of DADS. As a case study, an analysis of a vehicle based on the UTM01 system is presented. This paper shows that the presented modeling technique is applicable to the dynamic characteristics evaluation and control law design of Maglev- type vehicles.

Lane Detection for Parking Violation Assessments

  • Kim, A-Ram;Rhee, Sang-Yong;Jang, Hyeon-Woong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.13-20
    • /
    • 2016
  • In this study, we propose a method to regulate parking violations using computer vision technology. A still color image of the parked vehicle under question is obtained by a camera mounted on enforcement vehicles. The acquired image is preprocessed through a morphological algorithm and binarized. The vehicle's shadows are detected from the binarized image, and lanes are identified using the information from the yellow parking lines that are drawn on the load. Whether parking is illegal is determined by the conformity of the lanes and the vehicle's shadow.

Electromagnetic Immunity Test Environments of Advanced Vehicles with Radar Sensor Systems (첨단자동차의 전자파 내성 실험 환경에 관한 연구: 레이더 센서를 중심으로)

  • Kim, Sungbum;Ryu, Jiil;Woo, Hyungu;Yong, Boojoong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.50-56
    • /
    • 2019
  • Recently, automobile industries have developed ADAS, smart cars, connected cars, automated driving systems, which use a variety of sensor systems - ultrasonics, cameras, lidars and radars - and communication systems. It is necessary to examine the electromagnetic immunity of vehicles equipped with those systems. The electromagnetic immunity tests are carried out in an electromagnetic semi anechoic chamber, which is cut off from the outside. It is difficult to create test environments in which the radar sensor systems of vehicles work properly in the test chamber. In this study, test jigs were designed and tested and as a result they are shown to be effective to create test environments for electromagnetic immunity tests of vehicles equipped with radar sensors. We also proposed additional safety standards for immunity tests of vehicles with radar systems that currently do not exist.

Electromagnetic Immunity Test Environments of Advanced Vehicles with Camera Sensor Systems (첨단자동차의 전자파 내성 실험 환경에 관한 연구: 카메라 센서를 중심으로)

  • Woo, Hyungu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.7-12
    • /
    • 2020
  • Recently, automobile industries have developed ADAS, smart cars, connected cars, automated driving systems, which use a variety of sensor systems - ultrasonics, cameras, lidars and radars - and communication systems. It is necessary to examine the electromagnetic immunity of vehicles equipped with the sensor systems due to the fact that the normal operation of those systems is very important to the safety of the vehicles. The electromagnetic immunity tests are carried out in an electromagnetic semi anechoic chamber, which is cut off from the outside. It is difficult to create test environments in which the camera sensor systems of vehicles work properly in the test chamber. In this study, test jigs were designed and tested and as a result they are shown to be effective to create test environments for electromagnetic immunity tests of vehicles equipped with camera sensors. We also proposed additional safety standards for immunity tests of vehicles with camera systems that currently do not exist.

Synthetic Image Generation for Military Vehicle Detection (군용물체탐지 연구를 위한 가상 이미지 데이터 생성)

  • Se-Yoon Oh;Hunmin Yang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.392-399
    • /
    • 2023
  • This research paper investigates the effectiveness of using computer graphics(CG) based synthetic data for deep learning in military vehicle detection. In particular, we explore the use of synthetic image generation techniques to train deep neural networks for object detection tasks. Our approach involves the generation of a large dataset of synthetic images of military vehicles, which is then used to train a deep learning model. The resulting model is then evaluated on real-world images to measure its effectiveness. Our experimental results show that synthetic training data alone can achieve effective results in object detection. Our findings demonstrate the potential of CG-based synthetic data for deep learning and suggest its value as a tool for training models in a variety of applications, including military vehicle detection.

A Study on the Heuristics Algorithm for a establishing Vehicle Scheduling Plan under dynamic environments - With the emphasis on the GPS and Digital Map - (동적인 환경하에서의 차량경로계획 수립을 위한 발견적 기법에 관한 연구 - GPS와 전자지도의 활용을 중심으로 -)

  • 박영태;김용우;강승우
    • Proceedings of the Korean DIstribution Association Conference
    • /
    • 2003.05a
    • /
    • pp.55-70
    • /
    • 2003
  • The most transport companies are placing increasing emphasis on powerful new techniques for planning their vehicle operations. They have tried to improve their vehicle control and customer service capability by adopting tile advanced information technology, such as GPS(Global Position System) and Using Digital Map. But researches on the VRSP(vehicle routing St schedule problem) in this situation were very few. The purpose of this research is to develop vehicle scheduling heuristics for making a real-time dynamic VRSP under the situation that GPS and using Digital Map are equipped to the transport company. Modified savings techniques are suggested for the heuristic method and an insertion technique is suggested for the dynamic VRSP. The urgent vehicle schedule is based on the regular vehicle schedule. This study suggest on VRSP system using GPS and Digital Map and the performance of the suggested heuristics is illustrated through an real case example.

  • PDF

A Study on the Structure and Characteristics of Light-duty FC Hybrid Vehicle (경부하 FC 하이브리드 자동차의 구조와 특성에 관한 연구)

  • Bong, Tae-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.911-917
    • /
    • 2007
  • Global primary energy demand is projected to increase by 1.7% per year from 2000 to 2030. Almost three-quaters of the increase in demand will come from the transportation sector. Fuel cell hybrid vehicle technology has the potential to significantly reduce energy and harmful emissions, as well as our dependence on foreign oil. In this paper, a systematic and logical methodology is developed and improved mainly to design light duty fuel cell hybrid electric vehicle. We investigated structure and characteristics of light duty FC hybrid vehicle carefully. It can easily be expanded to analyze vehicle-to-grid power connectable plug-in NeHEV. A fuel cell hybrid neighbourhood electric vehicle configuration has been studied in-depth utilizing the proposed methodology.

Nonlinear Formation Guidance Law with Robust Disturbance Observer

  • Shin, Hyo-Sang;Kim, Tae-Hun;Tahk, Min-Jea;Hwang, Tae-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.30-36
    • /
    • 2009
  • Many formation guidance laws have been proposed for VAV formation flight. Since most autonomous formation flight methods require various active communication links between the vehicles to know motion information of other vehicles, damage to the receiver or the transmitter and communication delay are critical problem to achieve a given formation flight mission. Therefore, in this point of view, the method that does not need an inter-vehicle communication is preferred in the autonomous formation flight. In this paper, we first summarize the formation guidance law without an inter-vehicle communication using feedback linearization and sliding mode control proposed in previous study. We also propose the modified formation guidance law with robust disturbance observer, which can provide significantly better performance than previously mentioned guidance law in case that other vehicles maneuver with large accelerations. The robust disturbance observer can estimate uncertainties generated by acceleration of leader vehicle. By eliminating the uncertainties using the estimated uncertainties, VAVs are able to achieve the tight formation flight. The performance of the proposed approach is validated by numerical simulations.

Conceptual Design of a Multi-Rotor Unmanned Aerial Vehicle based on an Axiomatic Design

  • Yoo, Dong-Wan;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.126-130
    • /
    • 2010
  • This paper presents the conceptual design of a multi-rotor unmanned aerial vehicle (UAV) based on an axiomatic design. In most aerial vehicle design approaches, design configurations are affected by past and current design tendencies as well as an engineer's preferences. In order to design a systematic design framework and provide fruitful design configurations for a new type of rotorcraft, the axiomatic design theory is applied to the conceptual design process. Axiomatic design is a design methodology of a system that uses two design axioms by applying matrix methods to systematically analyze the transformation of customer needs into functional requirements (FRs), design parameters (DPs), and process variables. This paper deals with two conceptual rotary wing UAV designs, and the evaluations of tri-rotor and quad-rotor UAVs with proposed axiomatic approach. In this design methodology, design configurations are mainly affected by the selection of FRs, constraints, and DPs.

Thermo-mechanical analysis of road structures used in the on-line electric vehicle system

  • Yang, B.J.;Na, S.;Jang, J.G.;Kim, H.K.;Lee, H.K.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.519-536
    • /
    • 2015
  • On-line electric vehicle (OLEV) is a new eco-friendly transportation system that collects electricity from a power cable buried beneath the road surface, allowing the system to resolve various problems associated with batteries in electric vehicles. This paper presents a finite element (FE) based thermo-mechanical analysis of precast concrete structures that are utilized in the OLEV system. An experimental study is also conducted to identify materials used for a joint filler, and the observed experimental results are applied to the FE analysis. Traffic loading and boundary conditions are modeled in accordance with the related standards and environmental characteristics of a road system. A series of structural analyses concerning various test scenarios are conducted to investigate the sensitivity of design parameters and to evaluate the structural performance of the road system.