Moving object detection system has been an emerging research field in various advanced driver assistance systems (ADAS) and surveillance system. In this paper, we propose two optical flow based moving object detection methods at dynamic scenes. Both proposed methods consist of three successive steps; pre-processing, foreground segmentation, and post-processing steps. Two proposed methods have the same pre-processing and post-processing steps, but different foreground segmentation step. Pre-processing calculates mainly optical flow map of which each pixel has the amplitude of motion vector. Dense optical flows are estimated by using Farneback technique, and the amplitude of the motion normalized into the range from 0 to 255 is assigned to each pixel of optical flow map. In the foreground segmentation step, moving object and background are classified by using the optical flow map. Here, we proposed two algorithms. One is Gaussian mixture model (GMM) based background subtraction, which is applied on optical map. Another is adaptive thresholding based foreground segmentation, which classifies each pixel into object and background by updating threshold value column by column. Through the simulations, we show that both optical flow based methods can achieve good enough object detection performances in dynamic scenes.
자율주행 차량은 다양한 센서를 활용하여 사람과 유사한 수준으로 실시간 도로환경 변화를 인지, 환경 변화에 대한 적절한 판단 및 제어를 수행하여야 한다. 특히 영상센서는 차선인식 기능을 통해 주행방향 결정 및 차로이탈 방지 등 조향제어 수행을 위한 인지에 활용된다. 하지만 관련 성능기준은 ADAS(Advanced Driver Assistance System)와 연계된 '운전자 보조' 역할에 초점이 맞춰져, 자율주행시 요구되는 '주체적 상황 인지'를 위한 성능조건과 다를 것으로 판단된다. 본 연구에서는 자율주행시 차선인식 기능이 정상적으로 작동되지 않는 상황이 지속될 때 차량 진행방향과 도로 선형방향의 불일치에 따라 발생되는 횡방향 차로이탈을 차량의 이동 궤적을 기반하여 추정하고, 안전성 확보를 위한 차로이탈 허용 수준 및 영상센서 성능수준을 제시하였다. 분석 결과 승용차 조건에서 차선인식 기능이 1초 이상 연속적인 오작동을 일으킨다면 차로이탈에 의한 위험한 상황에 놓일 수 있는 것으로 나타났다. 따라서 자율주행 차량을 위한 차선인식 기능 평가 시 현재 기준보다 큰 횡방향 차로이탈상황에 대한 검토가 필요할 것으로 판단된다.
ADAS(Advanced Driver Assistance Systems) and street furniture information collecting car like as MMS(Mobile Mapping System), they require object location estimation method for recognizing spatial information of object in road images. But, the case of conventional methods, these methods require additional hardware module for gathering spatial information of object and have high computational complexity. In this paper, for a coordinate of road sign in single camera image, a position estimation scheme of object in road images is proposed using the relationship between the pixel and object size in real world. In this scheme, coordinate value and direction are used to get coordinate value of a road sign in images after estimating the equation related on pixel and real size of road sign. By experiments with test video set, it is confirmed that proposed method has high accuracy for mapping estimated object coordinate into commercial map. Therefore, proposed method can be used for MMS in commercial region.
차량 인식 기술은 지능형 자율주행 차량 및 첨단 운전자 보조 시스템 (ADAS: Advanced Driver Assistance System)의 개발에 있어서 핵심 요소 기술이다. 영상 기반의 차량 검출 알고리즘은 일반적으로 가설 생성 (HG: Hypothesis Generation) 단계와 가설 검증 (HV: Hypothesis Verification) 단계로 구성된다. 가설 검증 단계는 관심 영역 (ROI: Region of Interest) 내에 차량이 존재할 가능성이 있는 후보 영역을 만드는 단계로서 전체 알고리즘의 복잡도와 성능에 영향을 미친다. 본 논문에서는 관심 영역 내에 존재하는 그림자와 차량으로 인한 에지를 검출하고 두 특징 정보를 결합한 가설 생성 방법을 제안하고 차량 후방 영상을 이용하여 사각지대를 감시하는 시스템에 제안 방법을 적용하는 실험을 수행하였다. 실험 결과로 제안 방법이 차량 후보 영역의 존재 여부와 위치 정보를 판단하기에 적합하며 이를 통해 차량 검출 알고리즘의 계산 복잡도를 개선하면서도 다음 단계인 가설 검증 시 검출 성능을 향상시킬 수 있음을 확인하였다.
본 논문은 최근 각광을 받고 있는 차선 이탈 알림 서비스인 LDW(Lane Departure Warning)와 같은 안정성 서비스를 제공하기 위하여, 비대칭 멀티코어 플랫폼을 구성한다. 멀티코어 플랫폼은 고속 영상처리를 담당하는 고속영상 MCU(Micro Controller Unit) 코어와 안정적인 제어를 요하는 곳에 저속 제어 MCU코어를 사용하는 멀티코어 H/W 플랫폼상에 AUTOSAR S/W플랫폼을 포팅하고, AUTOSAR 개발방법론에 따른 MBD(Model Based Development) 기반 모델을 활용하여 LDW 소프트웨어 컴포넌트(SW-C)를 설계하고 동작을 검증한다. 또한 고속 영상 MCU와 저속 제어 MCU간에는 가상화 기법을 사용하지 않고 타이머 기반 공유 메모리를 이용한 폴링 기법의 IPC(Inter Processor Communication) 기능을 개발하고, 외부 타 ECU(Electronic Contol Unit)와의 CAN 통신기능을 개발하여 알람 신호, 차량 시뮬레이션 신호와 같은 제어 신호 송수신을 처리할 수 있도록 AUTOSAR S/W 플랫폼을 적용한다. 본 연구를 통하여 고속 및 저속 비대칭 멀티코어상에 AUTOSAR가 탑재된 ECU 기능 개발이 가능함을 확인함으로써, ADAS(Advanced Driver Assistance System)와 같은 다양한 응용 서비스들을 제공할 수 있게 되며, ISO 26262로 대변되는 차량 기능안정성 확보가 가능하게 된다.
지능형 교통 시스템(ITS) 및 지능형 자동차의 운전자 보조 시스템에서 차선의 경계를 검출하기 위한 허프 변환 방법이 많이 연구되고 있다. 이 방법의 경우 차선을 효과적으로 인식하지만 차선 이외의 영역의 직선들도 인식할 수 있기 때문에 인식률이 떨어질 수 있고 연산속도가 늦어진다. 본 논문에서는 이러한 문제를 해결하기 위해 Hough space에 Accumulator cells를 최적화한 방법을 이용해서 차선 경계를 인식하는 알고리즘을 제안하였다. 이를 바탕으로 H/W 검증을 통해 안드로이드용 어플리케이션을 개발하였다. 스마트 기기의 사용자라면 언제 어디서든 운전자의 주행안전을 위한 차선검출 및 차선이탈 경보시스템을 사용 할 수 있도록 하였다. 소프트웨어 검증은 OpenCV를 사용하여 93.1%의 높은 차선인식률을 보였으며, 하드웨어 실시간 검증은 안드로이드용 휴대폰을 사용하여 68.89%의 차선인식률을 보였다.
교통 표지판 인식(TSR)은 운전자 보조 시스템(ADAS)의 중요한 부분 중의 하나이다. 하지만 일반적인 주간 상황이 아닌 야간, 눈, 비, 안개 등의 열악한 상황에 대한 연구는 주간 상황과 달리 표지판 고유의 색이 정확히 나타나지 않기 때문에 많이 이루어지지 않고 있다. 본 논문에서는, 주간 상황뿐 아니라 열악한 환경에서도 적용 가능한 기계학습 기반의 교통 표지판 인식 알고리즘을 제안한다. 열악한 환경에서는 일반적인 RGB 색 체계 정보를 이용한 방법은 좋은 성능을 보이지 못하므로 표지판의 형태적 특징을 이용하는 HoG 특징점 추출기를 이용하여 표지판의 형태적 특징을 추출하고 SVM 알고리즘을 이용하여 표지판을 검출하였다. 검출한 표지판의 인식에는 Normalized RGB 색 체계의 25개의 참조점을 통한 의사결정트리를 이용하였다. Intel i5 3.4GHz 환경에서 Full HD 해상도의 이미지에 대해 실험한 결과 안개 및 야간 등의 열악한 환경에서의 검출률은 96.4%, 인식률은 94%로 본 논문에서 제안하는 학습기반의 알고리즘이 열악한 환경에서의 표지판 검출 및 인식에 효율적으로 적용이 가능함을 알 수 있다.
최근 반도체 기술, 센서 기술 및 이동통신 기술의 발전으로 스마트 자동차 기술 연구 개발이 진행 중에 있다. 사회가 발전함에 따라 차량이 증가하였고 사고에 대한 위험은 점차 높아지고 있다. 그에 따라 기존의 차량용 블랙박스 외에 차량의 각종 센서 정보를 활용하여 운전자에게 다양한 정보를 제공하는 첨단 운전자 보조 시스템이 연구되고 있다. 본 논문에서는 차량 간의 통신기능을 포함하고, 주변의 정보를 습득하여 제공할 수 있는 스마트 카메라 장치를 설계 및 구현하여, 장치에 포함된 카메라로부터 입력 받은 영상을 분석하여 획득한 정보를 영상 메타데이터화 하는 기술에 대한 연구를 수행하였다. 또한 임베디드 장치의 제한된 계산 성능을 보완하기 위해 관심영역을 설정하는 S-ROI(Static-Region Of Interest), D-ROI(Dynamic-Region Of Interest) 방식을 고안하였다. 실험을 통해 영상처리 속도가 전체영상 분석에 비해 S-ROI의 경우 3.0배, D-ROI의 경우 4.8배 향상함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.