최근 딥 러닝을 중심으로 빠르게 발전하고 있는 기계학습 분류 알고리즘은 기존의 방법들보다 뛰어난 성능으로 인하여 주목받고 있다. 딥 러닝 중에서도 Convolutional Neural Network(CNN)는 영상처리에 뛰어나 첨단 운전자 보조 시스템(Advanced Driver Assistance System : ADAS)에서 많이 사용되고 있는 추세이다. 하지만 차량용 임베디드 환경에서 CNN을 소프트웨어로 동작시켰을 때는 각 Layer마다 연산이 반복되는 알고리즘의 특성으로 인해 수행시간이 길어져 실시간 처리가 어렵다. 본 논문에서는 임베디드 환경에서 CNN의 실시간 처리를 위하여 Convolution 연산 및 기타 연산들을 병렬로 처리하여 CNN의 속도를 향상시키는 하드웨어 구조를 제안한다. 제안하는 하드웨어의 성능을 검증하기 위하여 Xilinx ZC706 FPGA 보드를 이용하였다. 입력 영상은 $36{\times}36$ 크기이며, 동작주파수 100MHz에서 하드웨어 수행시간은 약 2.812ms로 실시간 처리가 가능함을 확인했다.
This paper addresses the effective and quantitative image DB construction for the development of front looking camera systems. The automotive industry has expanded the capability of front camera solutions that will help ADAS(Advanced Driver Assistance System) applications targeting Euro NCAP function requirements. These safety functions include AEB(Autonomous Emergency Braking), TSR(Traffic Signal Recognition), LDW(Lane Departure Warning) and FCW(Forward Collision Warning). In order to guarantee real road safety performance, the driving image DB logged under various real road conditions should be used to train core object classifiers and verify the function performance of the camera system. However, the driving image DB would entail an invalid and time consuming task without proper guidelines. The standard working procedures and design factors required for each step to build an effective image DB for reliable automotive front looking camera systems are proposed.
Among the various functions of ADAS (Advanced Driver Assistance System), the most important and representative function to the safety of vehicle passengers is AEB (Autonomous Emergency Braking system). In South Korea, laws are in progress from 2022 for making it mandatory for passenger vehicles to be installed. And as AEB-equipped vehicles continues to increase in the future, the demand for accident analysis related to the AEB function is expected to increase in the future. In order to find out the operating limits of AEB, it is necessary to consider the situations exceeding the standards covered by EuroNCAP. Therefore we have performed four experiments in this study, including situations encountered in real-word traffic conditions, i.e., an oblique stop of Global Vehicle Target (GVT) and ADAS sensor failures. These experimental results are expected to be of great help in accurate and reliable accident analysis by considering them when analyzing traffic accidents for ADAS vehicles.
In order to verify autonomous driving scenarios and safety, a lot of driving and accident data is needed, so various organizations are conducting classification and analysis of traffic accident types. In this study, it was determined that accident recording devices such as EDR (Event Data Recorder) and DSSAD (Data Storage System for Automated Driving) would become an objective standard for analyzing the causes of autonomous vehicle accidents, and traffic accidents that occurred from 2015 to 2020 were analyzed. Using the database system of IGLAD (Initiative for the Global Harmonization of Accident Data), approximately 360 accident data of EDR-equipped vehicles were classified and their characteristics were analyzed by comparing them with accident types of ADAS (Advanced Driver Assistance System)-equipped vehicles. It will be used to develop autonomous vehicle accident investigation guidelines in the future.
본고에서는 자동차의 자율주행이라는 최종의 목표를 위해 필요한 여러 가지 필수 기술 중 하나라고 할 수 있는 자동차의 자기 위치 인식을 위한 측위 기술에 대해 소개하고 그와 관련된 여러 연구 개발 동향을 살펴보고자 한다. 또한, 지능형 운전보조 시스템(ADAS, Advanced Driver Assistance System)에서 필수적인 고정밀 전자 지도(High Precision Map)가 자동차의 자기 위치 인식 정확도 향상에 어떤 방법으로 활용되는 지에 대해서도 알아 보고자 한다.
ADAS (Advanced Driver Assistance Systems) uses sensors such as camera, radar, lidar and GPS (Global Positioning System). Among these sensors, the camera has many advantages compared with other sensors. The reason is that it is cheap, easy to use and can identify objects. In this paper, therefore, a theoretical formula was proposed to obtain the distance from the vehicle's front wheel to the lane using a monocular camera. And the validity of the theoretical formula was verified through the actual vehicle test. The results of the actual vehicle test in scenario 4 resulted in a maximum error of 0.21 m. The reason is that it is difficult to detect the lane in the curved road, and it is judged that errors occurred due to the occurrence of significant yaw rates. The maximum error occurred in curve road condition, but the error decreased after lane return. Therefore, the proposed theoretical formula makes it possible to assess the safety of the LKA system.
자율 주행 차량은 주변 환경의 정보를 수집하는 센서, 측정된 데이터를 판단하는 제어 모듈로 구성된 첨단 운전자 지원 시스템(ADAS)을 기반하고 있다. 최근에 자율주행 기술에 대한 관심이 증가함에 따라 ADAS 입문 개발자들 및 학습자들을 위한 손쉬운 개발프레임워크가 필요하다. 그러나, 기존 개발 및 검증 방식은 고성능 자동차 시뮬레이터를 기반하기 때문에 검증 방법의 복잡성 및 고비용 등의 단점이 있다. 또한, 대부분의 방식은 시뮬레이터로부터 ADAS에서 필요로 하는 센싱 데이터를 직접 제공하지 않으므로 검증 신뢰성의 한계가 있다. 본 논문에서는 기존 방식들의 문제점들을 극복하는 3D 자동차 시뮬레이터를 활용한 상호작용형 ADAS 개발 및 검증 프레임워크를 제시한다. 영상인지 기반의 인공지능을 적용한 ADAS를 3D 자동차 시뮬레이터에서의 가상센서로 구현하고, 실제 시나리오에 자율주행 검증을 진행하였다.
기존의 첨단 운전자 지원 시스템 (Advanced Driver Assistance System, ADAS)들은 전방 위험탐지와 같은 한정적 상황에서의 사고 예방에 집중하고 있어 다양한 사고 시나리오가 존재하는 교차로에 적용하기에는 한계를 가지고 있다. 또한 기존 연구는 주로 사고 요인 분석에 집중하고 있어 첨단 운전자 지원 시스템의 사고 예방 성능에 관한 연구는 미비한 편이다. 이에 본 연구에서는 비전 및 레이더 센서 기반 첨단 운전자 지원 시스템의 다양한 교차로 사고 예방에 대한 성능을 평가하고 대책을 마련하고자 한다. 이를 위하여 미국의 Second Strategic Highway Research Program(SHRP2)의 naturalistic driving study(NDS)에서 수집된 사고/준사고 상황의 거리 측정 데이터를 기반으로 16개의 교차로 사고 시나리오를 도출하였고, 총 363건의 차량과 차량 간 사고를 분석하였다. 분석 결과 16개의 사고 시나리오 중 0.7의 사고 예방율을 기준으로 카메라 기반 시스템은 5개, 레이더 기반 시스템은 4개의 사고 시나리오에서 사고를 예방할 수 있었다.
신호등 검출은 첨단운전자보조시스템에서 매우 중요하며 최근 신호등 검출 알고리즘의 연구가 활발히 진행 중이다. 그러나 기존의 영상처리 기반의 신호등검출 알고리즘은 조명의 변화에 민감하다는 문제점이 있다. 이러한 문제점을 해결하기 위하여 본 논문에서는 다음과 같은 신호등 검출 알고리즘을 제안한다. 먼저 제안하는 컬러맵과 HSV(hue-saturation-value)를 이용하여 신호등의 후보영역을 검출한다. 이후 검출된 신호등 후보영역으로부터 HOG(histogram of oriented gradient) 서술자와 SVM(support vector machine)을 이용하여 신호등을 검출한다. 검출된 신호등 영상을 이용하여 제안하는 Multilayer HOG 서술자를 이용하여 신호등의 방향 정보를 결정한다. 실험결과에서 확인할 수 있듯이 제안하는 알고리즘은 높은 검출성능과 실시간 처리가 가능하다.
현대사회의 자동차 산업은 교통사고를 예방하고 운전자의 운전 부담을 줄이기 위해 첨단 운전 보조 장치(ADAS)를 개발 해왔다. ADAS중 차선유지지원장치(LKAS)는 안전과 운전 향상을 위해 차량 시스템을 자동화시키기 위해 개발되었다. LKAS의 주요 역할은 현재 차선 내에서 차량을 유지하는데 있어 운전자를 도와주는 것이다. LKAS는 레이더센서와 카메라센서를 사용하여 차선 내에서 차량의 위치에 대한 정보를 수집하고 필요한 경우 엑츄에이터에 명령을 전송하여 차량의 측면 이동에 영향을 미친다. 최근 LKAS가 장착된 차량 일부가 일부 선진국에서 상용화되며 안정성이 증가되었다. 국제적으로 LKAS 평가를 위한 시험절차는 ISO(International Organization for Standardization)와 UNECE(United Nations Economic Commission for Europe)와 같은 국제위원회에서 논의하며 개발중이다. 한국에서는 차량 안전을 위한 LKAS의 평가가 KNCAP(Korean New Car Assessment Program)에 의해 도입될 예정이다. 따라서 국제표준에 부합하는 국내 도로환경에 적합한 LKAS의 시험 절차가 개발되어야한다. 본 논문에서는 국내도로환경에 맞춘 LKAS 시험시나리오 개발 및 목표 상대거리를 구하는 수식을 제안한다. 그리고 제안한 시나리오와 수식을 평가하기 위해 LKAS가 장착된 상용차량을 사용하여 시험평가를 진행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.