• Title/Summary/Keyword: advanced component-based method

Search Result 116, Processing Time 0.026 seconds

Presenting an advanced component-based method to investigate flexural behavior and optimize the end-plate connection cost

  • Ali Sadeghi;Mohammad Reza Sohrabi;Seyed Morteza Kazemi
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.31-43
    • /
    • 2024
  • A very widely used analytical method (mathematical model), mentioned in Eurocode 3, to examine the connections' bending behavior is the component-based method that has certain weak points shown in the plastic behavior part of the moment-rotation curves. In the component method available in Eurocode 3, for simplicity, the effect of strain hardening is omitted, and the bending behavior of the connection is modeled with the help of a two-line diagram. To make the component method more efficient and reliable, this research proposed its advanced version, wherein the plastic part of the diagram was developed beyond the guidelines of the mentioned Regulation, implemented to connect the end plate, and verified with the moment-rotation curves found from the laboratory model and the finite element method in ABAQUS. The findings indicated that the advanced component method (the method developed in this research) could predict the plastic part of the moment-rotation curve as well as the conventional component-based method in Eurocode 3. The comparison between the laboratory model and the outputs of the conventional and advanced component methods, as well as the outputs of the finite elements approach using ABAQUS, revealed a different percentage in the ultimate moment for bolt-extended end-plate connections. Specifically, the difference percentages were -31.56%, 2.46%, and 9.84%, respectively. Another aim of this research was to determine the optimal dimensions of the end plate joint to reduce costs without letting the mechanical constraints related to the bending moment and the resulting initial stiffness, are not compromised as well as the safety and integrity of the connection. In this research, the thickness and dimensions of the end plate and the location and diameter of the bolts were the design variables, which were optimized using Particle Swarm Optimization (PSO), Snake Optimization (SO), and Teaching Learning-Based Optimization (TLBO) to minimization the connection cost of the end plate connection. According to the results, the TLBO method yielded better solutions than others, reducing the connection costs from 43.97 to 17.45€ (60.3%), which shows the method's proper efficiency.

Development of Intelligent Surveillance System Using Stationary Camera for Multi-Target-Based Object Tracking (다중영역기반의 객체추적을 위한 고정형 카메라를 이용한 지능형 감시 시스템 개발)

  • Im, Jae-Hyun;Kim, Tae-Kyung;Choi, Kwang-Yong;Han, In-Kyo;Paik, Joon-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.789-790
    • /
    • 2008
  • In this paper, we introduce the multi-target-based auto surveillance algorithm. Multi-target-based surveillance system detects intrusion objects in the specified areas. The proposed algorithm can divide into two parts: i) background generation, ii) object extraction. In this paper, one of the optical flow equation methods for estimation of gradient method used to generate the background [2]. In addition, the objects and back- ground video images that are continually entering the differential extraction.

  • PDF

Statistical Extraction of Speech Features Using Independent Component Analysis and Its Application to Speaker Identification

  • Jang, Gil-Jin;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4E
    • /
    • pp.156-163
    • /
    • 2002
  • We apply independent component analysis (ICA) for extracting an optimal basis to the problem of finding efficient features for representing speech signals of a given speaker The speech segments are assumed to be generated by a linear combination of the basis functions, thus the distribution of speech segments of a speaker is modeled by adapting the basis functions so that each source component is statistically independent. The learned basis functions are oriented and localized in both space and frequency, bearing a resemblance to Gabor wavelets. These features are speaker dependent characteristics and to assess their efficiency we performed speaker identification experiments and compared our results with the conventional Fourier-basis. Our results show that the proposed method is more efficient than the conventional Fourier-based features in that they can obtain a higher speaker identification rate.

Adaptive White Point Extraction based on Dark Channel Prior for Automatic White Balance

  • Jo, Jieun;Im, Jaehyun;Jang, Jinbeum;Yoo, Yoonjong;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.383-389
    • /
    • 2016
  • This paper presents a novel automatic white balance (AWB) algorithm for consumer imaging devices. While existing AWB methods require reference white patches to correct color, the proposed method performs the AWB function using only an input image in two steps: i) white point detection, and ii) color constancy gain computation. Based on the dark channel prior assumption, a white point or region can be accurately extracted, because the intensity of a sufficiently bright achromatic region is higher than that of other regions in all color channels. In order to finally correct the color, the proposed method computes color constancy gain values based on the Y component in the XYZ color space. Experimental results show that the proposed method gives better color-corrected images than recent existing methods. Moreover, the proposed method is suitable for real-time implementation, since it does not need a frame memory for iterative optimization. As a result, it can be applied to various consumer imaging devices, including mobile phone cameras, compact digital cameras, and computational cameras with coded color.

Extended-FEM for the solid-fluid mixture two-scale problems with BCC and FCC microstructures

  • Sawada, Tomohiro;Nakasumi, Shogo;Tezuka, Akira;Fukushima, Manabu;Yoshizawa, Yu-Ichi
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.45-68
    • /
    • 2009
  • An aim of the study is to develop an efficient numerical simulation technique that can handle the two-scale analysis of fluid permeation filters fabricated by the partial sintering technique of small spherical ceramics. A solid-fluid mixture homogenization method is introduced to predict the mechanical characters such as rigidity and permeability of the porous ceramic filters from the micro-scale geometry and configuration of partially-sintered particles. An extended finite element (X-FE) discretization technique based on the enriched interpolations of respective characteristic functions at fluid-solid interfaces is proposed for the non-interface-fitted mesh solution of the micro-scale analysis that needs non-slip condition at the interface between solid and fluid phases of the unit cell. The homogenization and localization performances of the proposed method are shown in a typical two-dimensional benchmark problem whose model has a hole in center. Three-dimensional applications to the body-centered cubic (BCC) and face-centered cubic (FCC) unit cell models are also shown in the paper. The 3D application is prepared toward the computer-aided optimal design of ceramic filters. The accuracy and stability of the X-FEM based method are comparable to those of the standard interface-fitted FEM, and are superior to those of the voxel type FEM that is often used in such complex micro geometry cases.

Efficient Class Identification based on Event (이벤트 기반의 효율적인 클래스 식별)

  • Choi, Mi-Sook;Lee, Jong-Suk
    • Journal of Digital Contents Society
    • /
    • v.9 no.2
    • /
    • pp.165-175
    • /
    • 2008
  • Currently, software development methods have been advanced to service-oriented from component-oriented, to component-oriented from object-oriented. The component-oriented and service-oriented software development methods are analyzed by object-oriented UML model. So, the efficient analysis method for object-oriented UML model needs. In this paper, we suggest the analysis guideline and process based on event using Input Data-Process-Output Data Table for identifying use cases and classes efficiently. And the suggested method complements the problems depending the developer's perspective and experience.

  • PDF

Review on Advanced Health Monitoring Methods for Aero Gas Turbines using Model Based Methods and Artificial Intelligent Methods

  • Kong, Changduk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.123-137
    • /
    • 2014
  • The aviation gas turbine is composed of many expensive and highly precise parts and operated in high pressure and temperature gas. When breakdown or performance deterioration occurs due to the hostile environment and component degradation, it severely influences the aircraft operation. Recently to minimize this problem the third generation of predictive maintenance known as condition based maintenance has been developed. This method not only monitors the engine condition and diagnoses the engine faults but also gives proper maintenance advice. Therefore it can maximize the availability and minimize the maintenance cost. The advanced gas turbine health monitoring method is classified into model based diagnosis (such as observers, parity equations, parameter estimation and Gas Path Analysis (GPA)) and soft computing diagnosis (such as expert system, fuzzy logic, Neural Networks (NNs) and Genetic Algorithms (GA)). The overview shows an introduction, advantages, and disadvantages of each advanced engine health monitoring method. In addition, some practical gas turbine health monitoring application examples using the GPA methods and the artificial intelligent methods including fuzzy logic, NNs and GA developed by the author are presented.

Testing of Advanced Relaying and Design of Prototype IED for Power Transformer Protection (전력용 변압기 보호용 시제품 IED 설계와 개선된 기법의 시험)

  • Park, Chul-Won;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.6-12
    • /
    • 2006
  • A popular method used by primary protection for power transformer is current ratio differential relaying (RDR) with 2nd harmonic restraints. In modern power transformer due to the use of low-loss amorphous material, the 2nd harmonic component during inrush is significantly reduced. The higher the capacitance of the high voltage status and underground distribution, the more the differential current includes the 2nd harmonic component during internal fault. Thus the conventional method may not operate properly. This paper proposes an advanced relaying algorithm and the prototype IED hardware design and it's real-time experimental results. To evaluate performance of the proposed algorithm, the study is well constructed power system model including power transformer utilizing the EMTP software and the testing is made through simulation of various cases. The proposed relaying that is well constructed using DSP chip and microprocessor etc. has been developed and the prototype IED has been verified through on-line testing. The results show that an advanced relaying based prototype IED never mis-operated and correctly identified all the faults and that inrushes that are applied.

A Sinkhole Detection Method based on Incremental Learning in Wireless Ad Hoc Networks

  • Kim, Ki-Sung;Kim, Se-Hun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.377-382
    • /
    • 2007
  • Mobile ad hoc network(MANET) is a kind of wireless network which has no infrastructure. Each component node of MANET can move freely and communicate based on wireless peer to peer mode. Because of its vulnerable routing protocols, MANET is exposed to many kinds of attacks. A sinkhole attack is one of the representative attacks in MANET caused by attempts to draw all network traffic to a sinkhole node. This paper focuses on the sinkhole problem on Dynamic Source Routing(DSR) protocol in MANET. To detect the sinkhole node, we extract several useful sinkhole indicators through analyzing the sinkhole problem, then propose an efficient detection method based on an incremental learning algorithm. The simulation results show that the proposed method is effective and reliable for detecting sinkhole intrusion.

  • PDF

Optimization of ground response analysis using wavelet-based transfer function technique

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.149-164
    • /
    • 2014
  • One of the most advanced classes of techniques for ground response analysis is based on the use of Transfer Functions. They represent the ratio of Fourier spectrum of amplitude motion at the free surface to the corresponding spectrum of the bedrock motion and they are applied in frequency domain usually by FFT method. However, Fourier spectrum only shows the dominant frequency in each time step and is unable to represent all frequency contents in every time step and this drawback leads to inaccurate results. In this research, this process is optimized by decomposing the input motion into different frequency sub-bands using Wavelet Multi-level Decomposition. Each component is then processed with transfer Function relating to the corresponding component frequency. Taking inverse FFT from all components, the ground motion can be recovered by summing up the results. The nonlinear behavior is approximated using an iterative procedure with nonlinear soil properties. The results of this procedure show better accuracy with respect to field observations than does the Conventional method. The proposed method can also be applied to other engineering disciplines with similar procedure.