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Abstract

AVe apply independent component analysis (ICA) for extracting an optimal basis to the problem of finding efficient 

feaiures for representing speech signals of a given speaker. The speech segments are assumed to be generated by a linear 

combination of the basis functions, thus the distribution of speech segments of a speaker is modeled by adapting the basis 

functions so that each source component is statistically independent. The learned basis functions are oriented and localized 

in both space and frequency, bearing a resemblance to Gabor wavelets. These features are speaker dependent characteristics 
and to assess their efficiency we performed speaker identification experiments and compared our results with the 

conventional Fourier-basis. Our results show that the proposed method is more efficient than the conventional Fourier-based 

feaiures, in that they can obtain a higher speaker identification rate.

Keywords： Feature extraction, Independent component analysis, Generalized gaussian mixture model, Speech coding, 
speaker identification

I. Introduction

Speaker identification is a process of selecting the 
best-matched speaker among the enrolled speakers, with 
the personal identity information extracted from speech 

signals. Currently, one of the main focuses in speaker 
identification research is based on finding efficient 
features for speech signals. The standard Fourier basis 
approach has taken the leading role by decomposing the 

speech signals into a superposition of a finite number of 
sin Lisoids. Thereafter the spectral analysis techniques such 

as linear predictive coding (LPC), filter bank analysis, 
cej*stral analysis and their variants have been shown fairly 
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good perfbrmances[l]. Different efforts are also made to 
find the new features adopting statistical approaches. 

Using independent component analysis (ICA)[2,3], a 
technique of linearly transforming cepstral vectors fbr the 

performance improvement of a speaker identification 

system was proposed[4]. In[5], linear discriminant anal

ysis (LDA) was used to enhance the discriminability of 
the cepstral features with respect to the given data. 
However, because these approaches are still involved in 
the Fo니Her-based representation, they are not necessarily 
able to express the statistical structure of the speech 
signals but assume that all the signals are infinitely 

stationary and that the significances of all the Fourier 
basis functions are equal.

In the other aspect, ICA has suggested statistical ways 
of constructing a basis fbr a given set of speech signals 
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[6]. This paper investigates a statistical speech analysis 
method based on ICA for modeling the differences in the 

statistical features among the speakers. The ICA filters 
maximize the amount of information in the transformed 

domain, so that the adapted individual basis functions 
obtained by ICA can model the distribution of the 
individual speaker. In estimating the probability density 

functions for the sources, previous works[6-8] adopted 

fixed priors such as Laplacian or strong super-Gaussian 
which have a more sharpened point at the peak than the 

Gaussian distribution. However, since we do not want to 

impose a certain density on the sources we employ the 
generalized form of Gaussian functions[9], also called the 

generalized exponential power distributions, which can 
model the wide range of distributions. We compare the 

ICA-based features with the Fourier-based and PCA 

features by performing speaker identification experiments 

on 20 speakers chosen from the TIMIT database. In our 

approach, the source coefficients for each basis function 
are modeled by the generalized Gaussian density, then the 

speaker is classified by the one with the highest likelihood 
given all the basis functions for each class. Given the 

results, we demonstrate that the proposed features are 
effective in describing the statistical structures of speakers.

II. Learning Basis Functions

This section presents the generalized Gaussian ICA 
learning algorithm for adapting statistically optimal basis 

features of the speech sounds. The learned basis outsteps 
the sinusoidal decomposition that the Fourier basis 

inherently subsumes. The analysis procedure follows the 

basics of the Fourier transform: it is assumed that the 
speech signals are constructed by the linear combinations 

of the basis functions in the time domain. Instead of the 
sinusoidal basis functions ICA infers the time-domain 
basis functions generating the most probable coefficients 
given the learning data.

2.1. A Model for Speech Signal Representation
The ICA algorithm was initially proposed to solve the
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Figure 1. Decomposition of a speech signal into scaled basis 

functions. The speech signal UeftEOst) is recon- 

str나cted by the complete basis hmctions with the 

activations (0.5, 0.3, 0.2, ...}.

blind source separation problem, i.e. given only mixtures 

of a set of underlying sources, the task is to separate the 

mixed signals and retrieve their original sources[3,10] 

without knowing how the signals were mixed nor the 

distribution of the sources. In contrast to correlation-based 
transformations such as principal component analysis 

(PCA), ICA not only decorrelates the signals (using 2 nd 

-order statistics) but also reduces higher-order statistical 

dependencies, thus making the output signals as 
statistically independent as possible. Furthermore, the ICA 

bases are not restricted to be orthogonal.
ICA assumes an unknown source vector s with 

components & that are statistically independent to each 

other. The sources are not observed directly but linear 

combinations of the sources such that

x=As=^a母 (1)

where A is a NxM scalar matrix. The columns of 

A, a/, are called the basis functions generating the 

observed segments of the speech signal in the real 

world whereas W= A-1 refers to the ICA filters 
that transform the segments into activations or source 

coefficients s= Wx. A has to be square and full 
rank in order to be a complete basis. The goal of ICA 

is to find the basis functions by adaptation or learning 

given only the observed data x. During the adaptation 

process a cost function such as the mutual information 
function is minimized. Once the minimum is achieved, 
the sources & will be as statistically independent as 

possible.

Figure 1 illustrates the linear decomposition of speech 
signals as in equation 1. The speech segment can be 

represented as a linear superposition of the basis functions 
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( alt a2, a3t...}, scaled by the corresponding scalar 

activations {0.5,0.3,0.2,…}. The speech segment is 
represented mostly by 3 basis functions, while other 

coefficients are almost zero. For Fourier basis, each a； 

is a complex sinusoid with its own frequency and unit 

magnitude, resulting in mutual exclusion (orthonormality) 
wilh the other sinusoids. ICA basis is different in that the 
ba>，is functions are real and not necessarily orthogonal, and 

the sources are statistically independent.
Our primary interest is in learning efficient codes, i.e. 

the activations s should be as sparse as possible. 

Spiirseness in this case assumes that the input data are 
encoded in the sources in such a way that the distributions 

of s are peakier (having a more sharpened point at the 

petik) than those of x： assuming the variances of 욚 and 

x to be equal, fbr some short interval centered at the 

mean (e.g. aSiu +as])t the percentage of being inside 

increases more fbr s than x as the interval shrinks, 

altllough p(s) should have a longer but thinner tail to 

retain the equal variances. For the very small-sized 
interval, the encoding errors occur mostly outside, so we 

nee d to encode and decode only small percentage of those 

inf<)rmative tails fbr peaky (sparse) coefficients s, and 

therefore the adapted basis fiinctions generate efficient 

codes.
What matters is how well matched the model 

disiribution is to the true underlying distribution. We are 
interested in inferring the distribution that results in 
ma dmally independent coefficients for the sources. We 

the refbre use the generalized Gaussian distribution to 
model the underlying distribution of the source coeffi

cients. The generalized Gaussian prior[9], also known as 

exponential power distribution, whose simplest form is 

力(s)ocexp( —IsT7), can describe Gaussian, platykurtic, and 
lepi：okurtic distributions by varying the exponent q. The 
optimal value of q fbr given data can be determined from 
the maximum a posteriori value and provides a good fit 
fbr the distributions. In the following sections we present 
an ICA learning algorithm using generalized Gaussian as 
a ilexible prior that estimates the distributions of the

2.2. Statistic Learning of Speech Basis
The goal of ICA is to adapt the basis functions by 

estimating s so that the individual components ; are 

statistically independent, and this adaptation process 

minimizes the mutual infomation between the components
In our experiments, we used the infbmax learning rule 

[3] with natural gradient extension and updated the basis 

functions by the following learning rule:

JAoc A[ I - ??(s) s']. (2)

where I is the identity matrix, °(s) = —" 혀讯 

sT denotes the matrix transpose of s. We assume that 

A is square (the number of sources are equal to the 

number of sensors). JA is the change of the basis 

functions that is added to A and will converge to zero 

once the adaptation process is complete. Calculating °(s) 

requires a multivariate density model fbr Z)(s). Because 

the components are supposedly independent, the likelihood 

of the source vector factorizes into component densities:

力(s)=也成&)・ (3)
t

The parametric density estimate 力 J s’)plays an essen

tial role in the success of the learning rule in 2. Local 
convergence is assured if /is an estimate of the true 

source density[ll]. Note that the global shape of pi(s[) 

was fixed in previous works[6-8].

2.3. 가ie Generalized Gaussian Distributions
The success of the ICA learning algorithm fbr our 

purpose depends highly on how closely the ICA density 
model describes the true source density. The better the 

source density estimation, the better the basis functions or 
speech features in turn are responsible for encoding the 
speech signals. The generalized Gaussian distribution 
models density functions that are peaky and symmetric at 
the mean, with a varying degree of normality in the 

following general form:

sources.
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(a) Gaussian： beta=0.0 kurt=0.0

(c) Source Coefficients： ku「t그28.7

(b) Laplacian： beta=1.0 kurt=3.0

(d) Flitted： q=0.44 k니1 그33.2

Figure 2. The distribution of source coefficients for actual speech compared to the Gaussian and Laplacian distributions, (a) 

Gaussian distribution of kurtosis 0. (b) Laplacian distribution of kurtosis 3, peakier than Gaussian, (c) The distribution of 

the source coefficients, extracted from 200,000 samples of speech data from the TIMIT database, (d) The maximum

likelihood estimated exp미lenUal power distribution from the distribution of (c). The x-axis is the value of the source 

coefficients.

力(珈= •으加~ e쩌 -c씨坚그勺 (4)

where // = E[x], <7 = V E[ (x— z/)2],

膈一「江3/g]]时2 z x Il3/g]1/2 偷
心)_[ Hl/d 1 ，点 &-(2/小 ni/d 3/2 . The

exponent q controls the distribution's deviation from 

normality. The Gaussian, Laplacian, and strong Laplacian 
一speech signals— distributions are modeled by putting 

q = 2, q= 1, and 1 respectively. By substituting 力(s» 
in equation 3 with equation 4, we obtain the following 
score function:

끼月) = — 姻 而浦*, (5)

where 〃=蔔卽(&), c and (爲 are as defined above. 

Gradient ascent learning is applied in order to estimate the 

parameters that maximize the log likelihood. The detailed 
derivation of learning algorithm is found in[9].

Figure 2 compares the distribution of the source 
coefficients fbr the actual speech segments (c), with 
several kinds of the exponential power distributions; (a), 
(b), and (d). In (c), it is sharply peaked around zero and 
has heavy and long tails; there is only a small percentage 
of informative values (non-zero coefficients) in the tails 

and most of the data values are around zero, i.e. the data 
is sparsely distributed. From a coding perspective this 

implies that we can encode and decode the data with only 

a small percentage of the coefficients. The peakiness of 

a distribution can be calculated by the standard kurtosis 

measure, K(s) = (s — s)，/夜]一 3, which is proportional 

to the peakiness. The calculated kurtosis of the coefficients 
for speech signals is 28.7, and ideally those of Gaussian 

(a) and Laplacian (b) are 0 and 3. Hence, neither Gaussian 
nor Laplacian prior distribution can describe the source 
distribution correctly. From the actual speech data, we 

obtained the maximum a posteriori value of the exponent 
using the algorithm formerly presented[9]. The distribution 

is plotted in (d), with the exponent 0.44, and kurtosis 

increased to 33.2.

III. Comparing Learned Bases

The speaker-specific bases were learned with separate 
data for each speaker, and used in obtaining the features 
of the speech signals, while the same bases were used 
reganiless of the speakers at the Foxirier bases. We used
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Figure 3. Comparison of DFT and PCA basis functions, (a) 16 

examples of DFT basis functions out of 64, (b) 

DCT, (c) PCA basis functions of male speakers 

'mjebr, and (d) PCA basis functions of female speakers 

IkfbO* from the TIMIT speech database. Ttie waveforms 

of both DFT and DCT basis functions are inherently 

pure cosines. Each DFT basis function has 2勿 cyclicity 

(first and last samples in the segment have the same 

values) but each DCT basis function has 兀 The PCA 

basis functions have no such restricted waveforms.

Figure 4. Example plots of learned ICA basis hjneti이is. (a), (b)： 

male speakers *mjebr and 'mdpkO'; (c), (d)： female 

speakers 'fkfbO' and 'feed。' from the TIMIT database. 

Each basis function is up-sampled by 3 to remove 

artifacts from sample aliasing. Only 16 basis hjnetions out 

of 64 are shown, They are obtained by the generalized 

Gaussian ICA learning algorithm from the 64-sample 

speech segments.

the 1IMIT database to learn the basis of each speaker, and 

the f satures ■—coefficients--- were compared in terms of 
the sparseness and the speaker identification rate.

3.1. Data Description
From the TIMIT database, 20 speakers are chosen in 

order not to be biased to any special case. The speakers 

in the TIMIT database are classified by 8 dialects of the 
US English, and therefore we selected speakers to have 
the same (but not exactly) number of dialects. Regarding 
the t(ixt of the sentences, we selected the sentences from 
the SX (phonetically-compact) and the SA (dialect) set. 
For each speaker the SX set consists of 5 sentences 

randomly chosen out of 450 different sentences that were 

designed to provide a good coverage of pairs of phones 

frequently used in English. The SA set consists of 2 

utten inces of 2 designated sentences that were same for 
all the speakers. 4 of the SX and SA utterances are 
assigned for training, the rest 3 for testing with no 
intersection. The unit of speaker identification testing was 

1 utterance. The average length of an utterance is about 
3 seconds, so the amount of training data is 12 seconds 
(3X4 utterances) on the average. We down-sampled the 

original 16 kHz-sampled data to 8 kHz and applied 

pre-emphasis with the filter 1 -0.95-z -1 to complement 
the energy decrease in the high frequencies of human 
speei：h. Those processes reduce the redundancy and 

prevent a low-frequency component from dominating the 

gradient. Because every utterance is labeled with a speaker 
ID, only the target speaker's data are used for learning of 

the speaker-specific bases in a supervised manner. For the 

given speech signals we employed every window of length 

64 samples (8 ms) starting at every other sample as 

learning data x. The number of datapoints for each 

speaker's basis was roughly 96,000 segments because the 
length of the training data was 12 seconds (96,000 

samples).

3.2. Characteristics of Basis Functions
In equation 1 we assumed the basis functions has the 

real values only, so we adopted the real parts of the 

short-time (windows of 64 samples) discrete Fourier 
transform (DFT) basis functions as a conventional Fourier 

basis. The discrete cosine transform (DCT) which gives 
only real coefficients is closely related to DFT and adopted 

for comparison:

DFT: s야/) = 寸n(")cos 2저叱 (鶴—i). /xx
n=l -ZV

DCT： s야/) = 力 %(沥cos "赁(2死一！.),
n=l Zlv (7)

k= 1,...»TV

The DFT traditionally assumes that the data x( n) is 
periodically continued with a period of N. Due to this 
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cyclicity assumption 닌nderlymg Founer transform, 

samples along two opposite borders of the segment are 

expected to have the similar values. Figure 3 compares the 

waveforms of the DFT and DCT bases with the PCA 

basis. They look similar in that the basis functions are 

spread all over the time axis. However PCA basis is data 
driven and exhibits less regularity. The DFT and DCT 

basis functions are completely stationary (figure 3 (a)-(b), 

composed of 1 sinusoid of unique frequency for each) as 
defined in euqation 7.

In contrast to these conventional bases, subsets of 

learned basis functions are presented in figure 4. The 
adaptation of the generalized Gaussian ICA learning 
started from 64 x 64 square PCA basis functions, and the 
gradients of basis functions were computed on a block of 
500 waveform segments. The parameter qi for each 力(&) 

was updated every 10 gradient steps. Figures 4 (a)-(b) are 

examples of the male basis functions, and (c)-(d) represent 

the female ones. Unlike the PCA and Fourier bases, they 

are represented by the superposition of sinusoids of 

different magnitude and some of them reside only in 
confined ranges in the time domain. Male basis functions 

have one Gaussian-modulated sinusoid generally, and 

female ones have a few, generally two, or cover all time 
axis like the Fourier basis. In frequency domain, each basis
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Figure 5. The univariate statistics of the coefficients of the DFT, 

DCT, PCA, ICA bases, which are depicted by the 

histograms with the dashed, thin s이d, dash-dotted, and 

thick wlid line. The data are from the male speaker 

'mgm‘ in TIMIT. Note that the y-axis is a log scale. 

function covers the different portions from high to low 

frequencies. Their structures are similar to Gabor-iike 

filters, especially for male basis functions. More analysis 

on the difference of the male and female basis fimctions 

can be found in our early work[12].

3.3. Comparing Basis Coefficients
We measured statistical parameters and the schematic 

diagrams to quantify the effectiveness of the basis 
functions in comparison with conventional methods. The 
parameters of the generalized Gaussian mixture model are 
estimated for the real DFT, DCT, PCA, and ICA 
coefficients of the same training data. Figure 5 compares 
the log-scaled histograms of the coefficients. The 
distribution of the ICA coefficients is slightly peakier and 
has a longer tail, and this spreading of the tail yields 
greater sparseness. This is reflected in the kurtosis measure 
of 37.3 for the ICA, compared to 25.2, 26.7 and 24.9 fbr 
the PCA, DCT and DFT bases. Figure 6 illustrates the 
statistical dependency of the coefficients schematically in 
two-dimensional plots. Fig. 6-(a) shows that the nearby 
DFT coefficients are highly conelated, and fig. 6-(b) 

shows that this correlation decreases as the adjacency 
reduces. In fig. 6-(c) and (d), both PCA and ICA bases 
succeed in decorrelation, moreover ICA basis is sparser 

Figure 6. Schematic view of correlation： 2-dimensional plots of 

the selected two coefficients for each basis. The data 

are from the male speaker 'mgM' in the TIMIT. (a), 

(b) DFT [2 versus 3] and [2 versus 20]; (c) PCA[1, 

2]; (d) ICA [1,2]. The DFT basis has high corre

lation between adjacent coefficients as shown in (a), 

and ICA basis best satisfies the sparseness criterion 

that the distribution is peaky and has long tail.
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thar. the other three bases.

3.4. Supervised Classification of Speakers
We performed speaker identification experiments using 

the generalized Gaussian mixture model[9], which is an 
extension of the Gaussian mixture model with ICA and 
the generalized Gaussian density model, on estimating the 
density functions of the coefficients of each basis. The 
mix ure model assumes that the observed data can be 
categorized into mutually exclusive classes whose 
components are generated by a linear combination of 
independent sources. The source densities are modeled by 
generalized Gaussians. The generalized Gaussian mixture 

model using ICA infers for each class the source 

parameters and the basis functions.
To compute the probability density of a speech signal, 

光(引)，we extract the coefficients for all the speaker basis. 

We first construct the speech segments x/s sampled 

every shift length P\

xt = [x(n) x(n+ 1) ... x(n + N— 1)]T (8)

where n= P(t—1) + 1 and N is the length of each basis 
function. The shift P is half of N in our experiment,

IN/2 J ・ The generalized Gaussian and the basis 
function matrix obtained fbr each speaker, obtained from 
the speaker-specific learning data, comprise each compo
nent of the mixture model. The number of components is 
therefore K, the number of speakers. The priori proba
bilities of speakers are assumed to be equal, i.e. for all 
k,八CQ = 1/K, because the models are trained separately 

in a supervised manner. Identification is done by 
calculating a posteriori probability by the maximum 

likelihood Baysian rule:

為* = arg I

TT 力(X』C左，力(CQ
=盹m沖---- 击—— (9)

= arg maxI^XxJG,

where & = ( A前 “初 qQ is the set of parameters de

scribing the generalized Gaussian pdf, vdiich are transfor
mation matrix, mean vector, and exponents of the source

Table 6. Identification Rates and the mean value of Kurtosis 

for each basis.

DFT DCT PCA ICA

ID rate 82.2% 79.8% 84.1% 87.5%

Kurtosis 24.9 26.7 25.2 37.3

distributions obtained by the ICA learning algorithm. In the 

case of ICA and PCA, the multivariate p.d.f 力(x』&) is 

calculated by the product of the marginalized distribution 

of the sour沃 coefficient •

I det A| (10)

The univariate density 力(s^Js) is calculated by a 

generalized Gaussian density function. For Fourier basis, 

since the transformation matrix ™Fourier transform--- is 
the same fbr all the speakers, the denominator in equation 
10 is omitted. The results shown in table 1 suggest that 

the ICA features are effective in discriminating speakers. 

The identification rate of the DCT was less than the DFT, 
because it decomposes the speech signals in a stricter 

manner (2N periodicity), which results overfitting speaker 

distributions.

IV. Discussion

This paper presented the use of ICA as a speech analysis 

technique of extracting the statistically optimal basis 

features of the speech sounds. This approach has already 

been introduced in many early works. Bell and Sejnowski 

(1996) applied this method to extracting basis features 
from natural sounds and speech sounds, and Lewicki and 

Sejnowski (1999) discussed the efficiency of coding 
speech sounds using the learned ICA basis features. Lee 

et al. (2000) proposed a technique of applying the basis 

features to speech recognition. In this work the likelihood 
of a given speech segment is calculated by a hidden 

Markov model whose observation probabilities are 

modeled by Gaussian mixture density functions of the 
log-scaled magnitude of the inferred coefficients.

Our work extended the previous ones to the problem of 
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the speaker identification. In the learning steps of the basis 
functions, we applied the generalized Gaussian density 

modeling fbr the distributions of source coefficients, and 

applied the corresponding ICA learning algorithm presented 
by Lewicki (2000), based on the observation that the 
distribution of the source coefficients of speech signals are 

highly super-Gaussian as illustrated in figure 2 Using the 

generalized Gaussian mixture models[9] in recognizing the 

unknown input speech signals, the proposed method takes 
advantage of the accurate modeling of the distributions of 
the underlying source coefficients. The basis itself describes 

the statistical structures of the speech signals of a given 
speaker without transforming them into another domain 

such as cepstral space.

By the experimental results we have shown that learned 
bases have better speaker identification performance than 

the commonly used spectral representations such as the 

DFT (discrete Fourier transform) and the DCT (discrete 
cosine transform). Our data set consists of spontaneously 

uttered sentences that give each speaker* s speech charac

teristics. In these examples, the learned basis resulted in 
increased identification rates of 5.3% and 7.7% compared 

to the DFT and the DCT.

V. Conclusion

We applied ICA to speech signals from individual 
speakers to extract a set of optimal basis functions. The basis 
functions were adapted using the generalized Gaussian ICA 
model resulting in basis functions and source coefficient 

statistics that were characteristical features for the individual 

speaker. Most basis functions were localized in time and 

frequency resembling Gabor-like wavelet filters. The corre
sponding source coefficients were extremely sparse resulting 
in efficient codes. The generalized Gaxissian ICA model is 
embedded into a mixture model allowing classification of 

the individual speakers based on the basis functions models 
fbr each speaker class. Our initial identification rates suggest 
superior performance compared to the Fourier or PCA based 
method. This can now serve as a baseline to fiirther 

investigate and optimize the identification procedure.

Currently, we are optimizing the system parameters to 
compare our results to state of the art speaker identification 

systems.
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