• Title/Summary/Keyword: advanced benchmark

Search Result 150, Processing Time 0.026 seconds

Korean Traffic Speed Limit Sign Recognition in Three Stages using Morphological Operations (형태학적 방법을 사용한 세 단계 속도 표지판 인식법)

  • Chirakkal, Vinjohn;Kim, SangKi;Kim, Chisung;Han, Dong Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.516-517
    • /
    • 2015
  • The automatic traffic sign detection and recognition has been one of the highly researched and an important component of advanced driver assistance systems (ADAS). They are designed especially to warn the drivers of imminent dangers such as sharp curves, under construction zone, etc. This paper presents a traffic sign recognition (TSR) system using morphological operations and multiple descriptors. The TSR system is realized in three stages: segmentation, shape classification and recognition stage. The system is designed to attain maximum accuracy at the segmentation stage with the inclusion of morphological operations and boost the computation time at the shape classification stage using MB-LBP descriptor. The proposed system is tested on the German traffic sign recognition benchmark (GTSRB) and on Korean traffic sign dataset.

  • PDF

Matching-based Advanced Integrated Diagnosis Method (매칭에 기반한 발전된 고장 진단 방법)

  • Lim, Yo-Seop;Kang, Sung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4A
    • /
    • pp.379-386
    • /
    • 2007
  • In this paper, we propose an efficient diagnosis algorithm for multiple stuck-at faults. Because of using vectorwise intersections as an important metric of diagnosis, the proposed diagnosis algorithm can diagnose multiple defects in single stuck-at fault simulator. In spite of multiple fault diagnosis, the number of candidate faults is drastically reduced. For identifying faults, the variable weight, positive calculations and negative calculations are used for the matching algorithm. To verify our algorithm, experiments were performed for ISCAS85 and full-scan version of ISCAS89 benchmark circuits.

Adaptive Fuzzy Control of Yo-yo System Using Neural Network

  • Lee, Seung-ha;Lee, Yun-Jung;Shin, Kwang-Hyun;Bien, Zeungnam
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.161-164
    • /
    • 2004
  • The yo-yo system has been introduced as an interesting plant to demonstrate the effectiveness of intelligent controllers. Having nonlinear and asymmetric characteristics, the yo-yo plant requires a controller quite different from conventional controllers such as PID. In this paper is presented an adaptive method of controlling the yo-yo system. Fuzzy logic controller based on human expertise is referred at first. Then, an adaptive fuzzy controller which has adaptation features against the variation of plant parameters is proposed. Finally, experimental results are presented.

DEVELOPMENT AND VALIDATION OF COUPLED DYNAMICS CODE 'TRIKIN' FOR VVER REACTORS

  • Obaidurrahman, K.;Doshi, J.B.;Jain, R.P.;Jagannathan, V.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.259-270
    • /
    • 2010
  • New generation nuclear reactors are designed using advanced safety analysis methods. A thorough understanding of different interacting physical phenomena is necessary to avoid underestimation and overestimation of consequences of off-normal transients in the reactor safety analysis results. This feature requires a multiphysics reactor simulation model. In this context, a coupled dynamics model based on a multiphysics formulation is developed indigenously for the transient analysis of large pressurized VVER reactors. Major simplifications are employed in the model by making several assumptions based on the physics of individual phenomenon. Space and time grids are optimized to minimize the computational bulk. The capability of the model is demonstrated by solving a series of international (AER) benchmark problems for VVER reactors. The developed model was used to analyze a number of reactivity transients that are likely to occur in VVER reactors.

Measuring the Degree of Virtualization of Korean Collaborative Organizations (국내 협업 조직의 가상조직화 수준 측정)

  • Im, Jae-In;Park, Gyeong-Hye
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2005.12a
    • /
    • pp.463-470
    • /
    • 2005
  • In a rapidly changing business environment, the improvement of managerial techniques through IT utilization brings about remarkable increases in profitability and redesign of work process for better performances. IT innovation by electronic instruments such as ICT e-business provides accelerates forming inter-organizational information network and helps them benchmark the best practices of advanced organizations. A new shift of paradigm by e-business across all enterprises has turned the traditional aspects of inter-organizational competition and relationship into a form of collaboration. Collaboration enables business activities in parallel position among companies and facilitates cooperation between partner enterprises. Lately, the concept of 'Synchronization' is emerging beyond dimension of cooperation between networks, and the most concepts related to it are converging into 'Collaboration Networks'. This research observes a virtual organization as a form of collaborative networks, and measures the degree of virtualization of Korean collaborative organizations.

  • PDF

Analysis of Core Disruptive Accident Energetics for Liquid Metal Reactor

  • Suk, Soo-Dong;Dohee Hahn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.117-131
    • /
    • 2002
  • Core disruptive accidents have been investigated at Korea Atomic Energy Research Institute(KAERI) as part of the work to demonstrate the inherent and ultimate safety of conceptual design of the Korea Advanced Liquid Metal Reactor(KALIMER), a 150 MWe pool- type sodium cooled prototype fast reactor that uses U-Pu-Zr metallic fuel. In this study, a simple method and associated computer program, SCHAMBETA, was developed using a modified Bethe-Tait method to simulate the kinetics and thermodynamic behavior of a homogeneous spherical core over the period of the super-prompt critical power excursion induced by the ramp reactivity insertion. Calculations of the energy release during excursions in the sodium-voided core of the KALIMER were subsequently performed using the SCHAMBETA code for various reactivity insertion rates up to 100 S/s, which has been widely considered to be the upper limit of ramp rates due to fuel compaction. Benchmark calculations were made to compare with the results of more detailed analysis for core meltdown energetics of the oxide fuelled fast reactor. A set of parametric studies were also performed to investigate the sensitivity of the results on the various thermodynamics and reactor parameters.

Development of an Analytic Nodal Expansion Method of Neutron Diffusion Equation in Cylindrical Geometry

  • Kim, Jae-Shik;Kim, Jong-Kyung;Kim, Hyun-Dae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.131-136
    • /
    • 1996
  • An analytic nodal expansion method has been derived for the multigroup neutron diffusion equation in 2-D cylindrical(R-Z) coordinate. In this method we used the second order Legendre polynomials for source, and transverse leakage, and then the diffusion eqaution was solved analytically. This formalism has been applied to 2-D LWR model. $textsc{k}$$_{eff}$, power distribution, and computing time have been compared with those of ADEP code(finite difference method). The benchmark showed that the analytic nodal expansion method in R-Z coordinate has good accuracy and quite faster than the finite difference method. This is another merit of using R-Z coordinate in that the transverse integration over surfaces is better than the linear integration over length. This makes the discontinuity factor useless.s.

  • PDF

A Study on the Key Points of Korean MPL Training System

  • Lee, Jang Ryong;Kwon, Moonjin;Kwon, Hanjoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.117-121
    • /
    • 2021
  • Multi-crew Pilot License (MPL) is an international pilot certification adopted by the International Civil Aviation Organization (ICAO) in 2006 under the recognition of the need for efficient and systematic pilot training including the education of pilots with advanced aviation technology and ability to respond to flight environment, resolution of the human factor problems of pilots, and provision of stable training tools for transport aircraft pilots for potential risk of pilot shortage in the future. South Korea also has prepared a legal basis for operating an MPL system in the Aviation Act in 2009, but there has been no domestic MPL qualifier. The biggest reason for this seems to be the insufficient domestic MPL training system. Therefore, it is necessary to benchmark the international standards of the ICAO, and to promote the development of the Korean MPL training system through revision and supplementation of laws and regulations in consideration of Korean circumstances.

Optimization of fuzzy controller for nonlinear buildings with improved charged system search

  • Azizi, Mahdi;Ghasemi, Seyyed Arash Mousavi;Ejlali, Reza Goli;Talatahari, Siamak
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.781-797
    • /
    • 2020
  • In recent years, there is an increasing interest to optimize the fuzzy logic controller with different methods. This paper focuses on the optimization of a fuzzy logic controller applied to a seismically excited nonlinear building. In most cases, this problem is formulated based on the linear behavior of the structure, however in this paper, four sets of objective functions are considered with respect to the nonlinear responses of the structure as the peak interstory drift ratio, the peak level acceleration, the ductility factor and the maximum control force. The Improved Charged System Search is used to optimize the membership functions and the rule base of the fuzzy controller. The obtained results of the optimized and the non-optimized fuzzy controllers are compared to the uncontrolled responses of the structure. Also, the performance of the utilized method is compared with various classical and advanced optimization algorithms.

Buckling analysis of functionally graded plates resting on elastic foundation by natural element method

  • Cho, J.R.
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.171-181
    • /
    • 2022
  • Functionally graded material (FGM) has been spotlighted as an advanced composite material due to its excellent thermo-mechanical performance. And the buckling of FGM resting on elastic foundations has been a challenging subject because its behavior is directly connected to the structural safety. In this context, this paper is concerned with a numerical buckling analysis of metal-ceramic FG plates resting on a two-parameter (Pasternak-type) elastic foundation. The buckling problem is formulated based on the neutral surface and the (1,1,0) hierarchical model, and it is numerically approximated by 2-D natural element method (NEM) which provides a high accuracy even for coarse grid. The derived eigenvalue equations are solved by employing Lanczos and Jacobi algorithms. The numerical results are compared with the reference solutions through the benchmark test, from which the reliability of present numerical method has been verified. Using the developed numerical method, the critical buckling loads of metal-ceramic FG plates are parametrically investigated with respect to the major design parameters.