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ABSTRACT

An analytic nodal expansion method has been derived for the multigroup neutron
diffusion equation in 2-D cylindrical(R-Z) coordinate. In this method we used the second
order Legendre polynomials for source, and transverse leakage, and then the diffusion eqaution
was solved analytically.

This formalism has been applied to 2-D LWR model. £k,y, power distribution, and

computing time have been compared with those of ADEP code(finite difference method). The
benchmark showed that the analytic nodal expansion method in R-Z coordinate has good
accuracy and quite faster than the finite difference method. This is another merit of using
R-Z coordinate in that the transverse integration over surfaces is better than the linear
integration over length. This makes the discontinuity factor useless.

I. INTRODUCTION

The nodal method is a scheme for analyzing multidimensional core avoiding large
storage and execution time, and have proved to be very successful in analyzing light water
reactors with Cartesian geometry."® However, the nodal methods in itself require more
computational efforts than the finite difference method in deriving the numerical scheme, and
the more numerical complexity is expected as they are applied in curvilinear coordinates as
oppose to rectangular geometry. In the result, much of the development of methods have
been restricted to the systems having Cartesian geometry.

In spite of these shortcomings, the cylindrical geometry is used often since the light
water reactor vessel has a cylindrical type with the symmetrically distributed control rods
along axial direction. Therefore, if we can model in the cylinder nodes, we can reduce the of
number of dimensions from 3 to 2 for full core analysis. A few researchers“® tried and
obtained good results. In this study, an analytic nodal expansion method is developed for the
cylindrical R-Z geometry.
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IL. Theory

The multigroup diffusion equation in the R-Z geometry for the energy group g and in
the node (i,j) is given by

—D,; V2¢‘”(7’ z)+‘.m¢,ﬁ(r,z)=sgg(r,z), (l)
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The key point in the derivation is to separate the spatial variables of Eq.(1), and convert
it into one-dimensional problems. In order to obtain a set of 1-D ordinary differential
equations, Eq.(1) is transverse-integrated and the process is repeated over each of the other
variables. The resulting set of one-dimensionsl differential equations is given as

&£

D,-;ZT $e(2) + Zrpo(2) = Sy(2) — Li(2), . (3
~D AL L 425+ 50 (D= Si(0 - Ly, (3b)

where the node indices have been dropped and the superscripts, r, z, indicate the integration
over that variable, and L indicates transverse leakage..

If the right sides of Eqgs.(3a) and (3b) are expressed in terms of second order Legendre
polynomials, then Egs.(3a) and (3b) can be solved analytically. Since these equations are valid
only within each node, and the boundary conditions are known only on the reactor boundaries
and its center(at r=0), it must be done to connect all the nodes in a given one-dimensional
block.

The analytic solutions of Eq.(3a) and Eq.(3b) are

$1(2) = a,c0sh(3,2) + B,sinh (3,2) + gna;kpk(—%), (4a)

= u A F KA+ P T

where

Derivations for the first node in radial direction must be derived independently, because
modified Bessel functions of the second kind, K;(A,7), diverge at r=0. The flux distribution
in this node is given by

8= ueloen) + FanP L), )
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Because Eq.(4a) and ’ (4b) include the surface net currents on both sides, to obtain
complete flux equations, the net currents must be known in advance. This can be done by
coupling three neighboring nodes. Connection of the adjacent nodes was done via interface

net currents. Applying the following continuity of interface fluxes

o+ hy) = Sgii(— ki), (62)
el 7it hy) = i1 7is1— Rrv). (6b)

to Eq.(4), relationships between interface net currents relating the three neighboring nodes are
obtained. These relationships are

R;J5-0(— by )+ DT —h )+ Uy T (= by ) = @, (73)
R i ricy = b D+ DTk ri—h) + Ui i (71— i) = Q. (7o)

Eq.(72) and (7b) are three point linear equations. And the connection of all 1-D
neighboring nodes yields a set of independent tri-diagonal systems for each direction and each
energy group.

In order to update the source terms which are expanded in polynomials, fluxes are
assumed to be in the form of Legendre polynomials, i.e.,

#3000 =03+ ZouP 1), ®
where }S—:; is node average flux.

In axial direction, the node average flux is equal to the zeroth order flux moment of
Legendre polynomial, but in radial direction this is not the case. In this study flux moment

for zeroth order is replaced by the node averaged flux for radial direction.
III. NUMERICAL RESULTS

We have performed numerical analysis by applying the derived formalism to a 2-D
LWR model® with 2-group constants. The results of ks, power distributions along radius
and axis, and the computing time were compared with those of ADEP™ code which uses
finite difference method.

Fig.1 shows the model of benchmark problem. And the two-group constants for the
problem are given in Table 1. Table 2 shows the eigenvalue and CPU time obtained from
ADEP and this study(program named CYLANEM). For the same mesh size, e.g., Jr=8cm,
42=18.75cm, nodal method produces much more accurate value than ADEP(finite difference
method) by the order of 2 even without using discontinuity factors. Even for larger mesh
sizes the results of nodal method are still accurate while those of ADEP are quite inaccurate.
The elapsed CPU times of ADEP are much longer than this study, so we used 10° for the
convergence criterion _of ADEP, while 107 for CYLANEM.
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Fig.2 and 3 show that the normalized relative power averaged over height and radius for
Adr=8cm, A4z=18.75cm, respectively.

IV. CONCLUSION

An analytic nodal expansion method to solve the multigroup neutron diffusion equation
for the cylindrical R-Z geomeiry has been derived. The results of the two-group test problem
applied in this study demonstrate that the nodal method developed in cylindrical coordinate is
much more accurate in the calculation of multiplication factor than the finite difference
method for the same mesh size. Highly accurate values can also be obtained even for larger
mesh sizes. These good accuracies are supposed to be the results of the radial integration,
which means the integration over radial surface rather than length. Therefore, discontinuity
factors are not necessary to apply for the currents between neighboring nodes in cylindrical
geometry. The derived nodal method for cylindrical geometry(R-Z) has been proved its
usefulness and the extension to three dimensional R- §-Z geometry is direct.

ACKNOWLEDGEMENT

We would like to acknowledge full support for this work from the Korea Science and
Engineering Foundation through the Center of Advanced Reactor Research.

REFERENCES

1. K. S. Smith, “An Analytic Nodal Method for Solving the Two-Group, Multidimensional,
Static and Transient Neutron Diffusion Equations,” MS Thesis, Dept. of Nuclear
Engineering, M. T., March 1975.

2. H. L. Rajic and A. M. Ougouag, "ILLICO: A Nodal Neutron Diffusion Method for
Modermn Computer Archtectures,” Nucl. Sci. Eng., 103, 392 (1989).

3. Noboru ITO and Toshikazu TAKEDA, “Three-Dimensional Multigroup Diffusion Code
ANDEX Based on Nodal Method for Cartesian Geometry,” J. of Nucl. Sci. and Tech., 27,
350~359 (1990). .

4, Y. Y. Azmy, "A Nodal Integral Method for the Neutron Diffusion Equation in Cylindrical
Geometry,” Trans. Am. Nucl. Soc., 54, 183 (1987).

5. 0. G. Komlev and 1. R. Suslov, “A Nodal Expansion Method for the Neutron Diffusion
Equation in Cylindrical Geometry,” Proc. of the International Conference Mathematics and
Computations, Reactor Physics, and Environmental Analysis, pl428, Portland, Oregon,
April 30-May 4, 1995.

6. Argonne Code Center : Benchmark Problem Book, ANL-7416, Supplement 2, June 1977.

7. R. S. Denning, "ADEP, One- and Two-Dimensional Few-Group Kinetics Code,”"BMI-1911
(1971).

-134-



0 CTHOYCIP'1
m-m~0oo.hm-m—wnmm.—

0 T-H89Ct’1
€-HISE0'8 €-HILLT'L

0 ¢-d89¢¢’1
€-dIS€0'8 €HOLLY'Y

0 2-d89¢¢’l
€HISEO'8 €HOLLI'L

0 T-d897¢’l
€-HISE0'8 €HILLI'T

0 C-H89C¢t’1
€HISE0'8 € HILLL'L
0 ¢-d89¢¢’1
¢-HISE0'8 €HILLL'L
0 0
cdn - 0
) 0
¢-H9'T 0

C-dS90¢°1 1S6L8°0
THOLYO'T L66T'1

T-He€6T' 1 LS8BY'0
T-HSLYO'T CTSOE'T

T-HEL6T'T LS888'0
THSLYO'1 TSOE'1

C-deSve’l LS8880
C-dSLYO'T TSOE'1L

T-de8IT’1 LS88BO
CT-HSLYO'1I TSOE'L

Z-A€T9T'T LS888°0
ZASLYO'T TSOE'|

C-HE90E'1 LS8B8O
T-HSLPO'T TSOE'!

THO06'1 TE0L8°0
THIOTT S6veE'l

e-de'e 190CE0
¢-H8'CT ¥890°1

- -

-y

o1

01

8L

€1°9

() tx (L wo)zn

(wo)¥x (wo)q dnorn uordoy

ISPOIN ¥MT W I0j sumsuo) dnoinp-omL ‘1 2IqEL

PO 101085y Z-¥ [euoisuowig-om] | ‘81

woezs = WBH
wWogpZ ~ SNIPEY

s
@D
€ | @ an
o} o] & (® W
@\ & W) )
@
m ‘oN uoidsy

~-135-



RELATIVE POWER DENSITY

23

204

0.5 4

0.0

T

—) T
s 100 130

RADIAL POSITION (em)

Fig. 2 Relative Power Demnity Aversged over Height
vs. Radius for Ar-8cm, Az=18.75cm
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Fig 3 Relative Power Density Averaged over Radius
vs. Height for Ar=8cm, Az=18.75cm

Table 2. Eigenvalues and Elapsed CPU Times Obtained from
ADEP and CYLANEM

Mesh Size ADEP CYLANEM

drem)| dzem) ei( e:r\;:lrl;e CP‘EJ setci;ne# el(%‘e:;zlrt;c CPI(JS etcx;nc#

Irregular Size** * " O | 336
20 37.5 * * O ey S| 1953
20 | 1875 [O7203987( 20u5 |O&50az 2| 3437
10 375 * > O ooy t| 39002
10 | 1875 [0-8999382] 4270 [O/SSICIL| 0.5
8 37.5 * " O o | 5054
8 18.75 |OFSCBIBOl 3028 |OSSI0eay| 99-10
éf:‘;;’j;‘ﬁfe 0.867053
* : Not available.

** - 40,80,40,40,40cm in radial direction.
37.5,37.5,112.5,150.0,112.5,37.5,37.5cm in axial direction.
# : Under 486 DX2-66.
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