• Title/Summary/Keyword: adult oviposition model

Search Result 18, Processing Time 0.026 seconds

Modelling The Population Dynamics of Laodelphax striatellus Fallén on Rice (벼에서 애멸구(Laodelphax striatellus Fallén) 개체군 밀도 변동 예측 모델 구축)

  • Kwon, Deok Ho;Jeong, In-Hong;Seo, Bo Yoon;Kim, Hey-Kyung;Park, Chang-Gyu
    • Korean journal of applied entomology
    • /
    • v.58 no.4
    • /
    • pp.347-354
    • /
    • 2019
  • Temperature-dependent traits of Laodelphax striatellus, rice stripe virus vector, were investigated at 10 constant temperatures (12.5, 15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0, 32.5, and 35.0 ± 1℃) under a fixed photoperiod (14/10-hr light/dark cycle). Unit functions for the oviposition model were estimated and implemented into a population dynamics model using DYMEX. The longevity of L. striatellus adults decreased with increasing temperature (56.0 days at 15.0℃ and 17.7 days at 35.0℃). The highest total fecundity (515.9 eggs/female) was observed at 22.5℃, while the lowest (18.6 eggs/female) was observed at 35.0℃. Adult developmental rates, temperature-dependent fecundity, age-specific mortality rates, and age-specific cumulative oviposition rates were estimated. All unit equations described adult performances of L. striatellus accurately (r2 =0.94~0.97). After inoculating adults, the constructed model was tested under pot and field conditions using the rice-plant hopper system. The model output and observed data were similar up to 30 days after inoculation; however, there were large discrepancies between observed and estimated population density after 30 days, especially for 1st and 2nd instar nymph densities. Model estimates were one or two nymphal stages faster than was observed. Further refinement of the model created in this study could provide realistic forecasting of this important rice pest.

Temperature-dependent Development and Fecundity of Rhopalosiphum padi (L.) (Hemiptera: Aphididae) on Corns (옥수수에서 기장테두리진딧물의 온도 의존적 발육과 산자 특성)

  • Park, Jeong Hoon;Kwon, Soon Hwa;Kim, Tae Ok;Oh, Sung Oh;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.55 no.2
    • /
    • pp.149-160
    • /
    • 2016
  • Temperature-dependent development and fecundity of apterious Rhopalosiphum padi (L.) (Hemiptera: Aphididae) were examined at six constant temperatures (10, 15, 20, 25, 30 and $35{\pm}1.0^{\circ}C$, RH 50-70%, 16L:8D). Development time of nymphs decreased with increasing temperature and ranged from 42.9 days at $10^{\circ}C$ to 4.7 days at $30^{\circ}C$. The nymphs did not develop until adult at $35^{\circ}C$ because the nymphs died during the 2nd instar. The lower threshold temperature and thermal constant of nymph were estimated as $8.3^{\circ}C$ and 101.6 degree days, respectively. The relationships between development rates of nymph and temperatures were well described by the nonlinear model of Lactin 2. The distribution of development times of each stage was successfully fitted to the Weibull function. The longevity of apterious adults decreased with increasing temperature ranging from 24.0 days at $15^{\circ}C$ to 4.3 days at $30^{\circ}C$, with abnormally short longevity of 11.1 days at $10^{\circ}C$. R. padi showed the highest fecundity at $20^{\circ}C$ (38.2) and the lowest fecundity at $10^{\circ}C$ (3.9). In this study, we provided component sub-models for the oviposition model of R. padi: total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate as well as adult aging rate based on the adult physiological age.

Using Viable Eggs to Determine Oviposition Models and Life Table Analysis of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) (톱다리개미허리노린재의 수정란을 이용한 산란모형과 생명표분석)

  • Ahn, Jeong Joon;Choi, Kyoung San;Koh, Sang Wook
    • Korean journal of applied entomology
    • /
    • v.58 no.2
    • /
    • pp.111-120
    • /
    • 2019
  • Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) is an economically important insect pest of soybean and fruit trees. We investigated the temperature effects on the adult fecundity and longevity, and determined the parameters of oviposition models and life table at different constant temperatures 15.8, 19.7, 24.0, 27.8, 32.6, 34.0, and $35.5^{\circ}C$. R. pedestris females reproduced successfully from 19.7 to $35.5^{\circ}C$ except $15.8^{\circ}C$. The longevity of R. pedestris was longest at $15.8^{\circ}C$ and it decreased with increasing temperature (76.6 days at $19.7^{\circ}C$ and 20.6 days at $35.5^{\circ}C$). The number of total eggs and viable eggs was highest at $24.0^{\circ}C$ (193.5 and 151.2). Egg hatchability was highest at $27.8^{\circ}C$ (84.0%). We compared the results of oviposition models and life table parameters using both total eggs and viable eggs. The parameter value (c: the maximum reproductive capacity) (190 eggs) of temperature dependent total fecundity model using total eggs was higher than that of the model using viable eggs. When we analyzed the life table parameter the values of net reproductive rate and mean generation time using viable eggs were lower than those using total eggs. The oviposition models and life table analysis using viable eggs will be helpful to understand the real population transition of R. pedestris in agricultural system.

Evaluation and Comparison of Effects of Air and Tomato Leaf Temperatures on the Population Dynamics of Greenhouse Whitefly (Trialeurodes vaporariorum) in Cherry Tomato Grown in Greenhouses (시설내 대기 온도와 방울토마토 잎 온도가 온실가루이(Trialeurodes vaporariorum)개체군 발달에 미치는 영향 비교)

  • Park, Jung-Joon;Park, Kuen-Woo;Shin, Key-Il;Cho, Ki-Jong
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.420-432
    • /
    • 2011
  • Population dynamics of greenhouse whitefly, Trialeurodes vaporariorum (Westwood), were modeled and simulated to compare the temperature effects of air and tomato leaf inside greenhouse using DYMEX model simulator (pre-programed module based simulation program developed by CSIRO, Australia). The DYMEX model simulator consisted of temperature dependent development and oviposition modules. The normalized cumulative frequency distributions of the developmental period for immature and oviposition frequency rate and survival rate for adult of greenhouse whitefly were fitted to two-parameter Weibull function. Leaf temperature on reversed side of cherry tomato leafs (Lycopersicon esculentum cv. Koko) was monitored according to three tomato plant positions (top, > 1.6 m above the ground level; middle, 0.9 - 1.2 m; bottom, 0.3 - 0.5 m) using an infrared temperature gun. Air temperature was monitored at same three positions using a Hobo self-contained temperature logger. The leaf temperatures from three plant positions were described as a function of the air temperatures with 3-parameter exponential and sigmoidal models. Data sets of observed air temperature and predicted leaf temperatures were prepared, and incorporated into the DYMEX simulator to compare the effects of air and leaf temperature on population dynamics of greenhouse whitefly. The number of greenhouse whitefly immatures was counted by visual inspection in three tomato plant positions to verify the performance of DYMEX simulation in cherry tomato greenhouse where air and leaf temperatures were monitored. The egg stage of greenhouse whitefly was not counted due to its small size. A significant positive correlation between the observed and the predicted numbers of immature and adults were found when the leaf temperatures were incorporated into DYMEX simulation, but no significant correlation was observed with the air temperatures. This study demonstrated that the population dynamics of greenhouse whitefly was affected greatly by the leaf temperatures, rather than air temperatures, and thus the leaf surface temperature should be considered for management of greenhouse whitefly in cherry tomato grown in greenhouses.

Parameterization of the Temperature-Dependent Development of Panonychus citri (McGregor) (Acari: Tetranychidae) and a Matrix Model for Population Projection (귤응애 온도발육 매개변수 추정 및 개체군 추정 행렬모형)

  • Yang, Jin-Young;Choi, Kyung-San;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.50 no.3
    • /
    • pp.235-245
    • /
    • 2011
  • Temperature-related parameters of Panonychus citri (McGregor) (Acarina: Tetranychidae) development were estimated and a stage-structured matrix model was developed. The lower threshold temperatures were estimated as $8.4^{\circ}C$ for eggs, $9.9^{\circ}C$ for larvae, $9.2^{\circ}C$ for protonymphs, and $10.9^{\circ}C$ for deutonymphs. Thermal constants were 113.6, 29.1, 29.8, and 33.4 degree days for eggs, larvae, protonymphs, and deutonymphs, respectively. Non-linear development models were established for each stage of P. citri. In addition, temperature-dependent total fecundity, age-specific oviposition rate, and age-specific survival rate models were developed for the construction of an oviposition model. P. citri age was categorized into five stages to construct a matrix model: eggs, larvae, protonymphs, deutonymphs and adults. For the elements in the projection matrix, transition probabilities from an age class to the next age class or the probabilities of remaining in an age class were obtained from development rate function of each stage (age classes). Also, the fecundity coefficients of adult population were expressed as the products of adult longevity completion rate (1/longevity) by temperature-dependent total fecundity. To evaluate the predictability of the matrix model, model outputs were compared with actual field data in a cool early season and hot mid to late season in 2004. The model outputs closely matched the actual field patterns within 30 d after the model was run in both the early and mid to late seasons. Therefore, the developed matrix model can be used to estimate the population density of P. citri for a period of 30 d in citrus orchards.

Estimation of the Second Flight Season of Chilo suppressalis (Lepidoptera: Crambidae) Adults in the Northeastern Chinese Areas (중국 동북부 지역에서 이화명나방(Chilo suppressalis)(Crambidae) 2화기 성충 발생 시기 추정)

  • Jung, Jin Kyo;Kim, Eun Young;Yang, Woonho;Lee, Seuk-Ki;Shin, Myeong Na;Yang, Jung-Wook;Ju, Hongguang;Jin, Dongcun;Pao, Jin;Wang, Jichun;Zhu, Feng
    • Korean journal of applied entomology
    • /
    • v.61 no.2
    • /
    • pp.335-347
    • /
    • 2022
  • We investigated the emergence patterns of Chilo suppressalis (Lepidoptera: Crambidae) adults using sex pheromone traps in the three northeastern areas, Dandong (40°07'N 124°23'E) (Liaoning province), and Gongzhuling (43°30'N 124°49') and Longjing (42°46'N 129°26'E) (Jilin province), China, in 2020 and 2021. Two times of adult flight seasons were isolated clearly during the rice growing periods in the all areas, in which the first season from mid May to late July, and the second season from mid July to mid September were observed. The adult emergence seasons in the areas at higher latitude were later than that at lower latitude. Using the adult emergence data during the first flight seasons, the second flight seasons were estimated through insect phenology modelling, and compared with the observed data. Temperature-dependent life history models (developmental rate, development completion, survival rate, adult aging rate, total fecundity, oviposition completion, and adult survival completion) were collected or constructed for each life stage of C. suppressalis, in which the data from the four previous studies were used. Those models were combined in an insect phenology estimation software, PopModel, and operated for the observed areas. In the results, the phenology modelling operated with the models based on the data of shorter larval periods in the previous studies estimated more accurately the second flight seasons. In 2021, we investigated the change of damaged hill ratios of rice with observing the adult emergence at Dandong and Longjing, 2021. The increase periods of damaged hill ratios of rice were observed two times during the total rice cultivation season, which may be caused by different generations of C. suppressalis larvae.

Development and Adult Life Span of Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae) Fed on the Melon Aphid, Aphis gossypii Glover or the Green Peach Aphid, Myzus persicae($S\"{u}lzer$) (Homoptera: Aphididae) (목화진딧물(Aphis gossypii)과 복숭아혹진딧물(Myzus persicae) (Homoptera: Aphididae)을 먹이로 한 진디혹파리[Aphidoletes aphidimyza (Rondani)] (Diptera: Cecidomyiidae)의 발육 및 성충수명)

  • Kim Tae-Heung;Kim Ji-Soo
    • Korean journal of applied entomology
    • /
    • v.43 no.4 s.137
    • /
    • pp.297-304
    • /
    • 2004
  • The development of Aphidoletes aphidimyza, an aphidophagous gall midge, was studied at various constant temperatures ranging from 15 to $35^{\circ}C$, with $65{\pm}5\%$ RH, and a photo-period of 16L:8D. When A. aphidimyra was fed either on Aphis gossypii or Myzus persicae, it took 43.9 and 44.5 days, respectively, to develop from egg to pupa at $15^{\circ}C$, whereas at $25^{\circ}C$, 14.3 and 15.8 days. The developmental zero was 10.7 and $10.0^{\circ}C$, respectively, while the effective accumuative temperatures were 210.8 and 245.5 day-degrees. The nonlinear shape of temperature-dependent development, shown by A. aphidimyza when fed on either species of the aphids, was well described by the modified Sharpe and DeMichele model. When distribution model of completion time of development for each growth stage was expressed as physiological age and fitted to the Weibull fuction, the completion time of development gradually shortened from egg to larva, and to pupa. In addition, the coefficient of determination $r^2$ ranged between 0.86-0.93 and 0.85-0.94, respectively providing a good approximation of cumulative developmental rates. The life span of adult was 8.7 and 9.2 days at $15^{\circ}C$, and 3.1 and 2.7 days at $30^{\circ}C$, respectively. Egg incubation period was relatively short at $35^{\circ}C$ but hatchability was less than $50\%$ and the mortality of the larva at $35^{\circ}C$ reached $100\%$. At $30^{\circ}C$, the time of development lengthened and the adult longevity was short suggesting ill effect of high temperatures. Even though the life span of adults at $15^{\circ}C$ was relatively long, none moved freely in the rearing cage and no oviposition occurred. Accordingly, in case A. aphidimyza is adopted to suppress phytophagus aphid populations, it could be applicable to cropping systems with ambient temperatures above $20^{\circ}C$ and below $30^{\circ}C$. Within this range, A. aphidimyza adults was observed to be active and oviposit fully.

Modeling and Validation of Population Dynamics of the American Serpentine Leafminer (Liriomyza trifolii) Using Leaf Surface Temperatures of Greenhouses Cherry Tomatoes (방울토마토에서 잎 표면온도를 적용한 아메리카잎굴파리(Liriomyza trifolii) 개체군 밀도변동 모형작성 및 평가)

  • Park, Jung-Joon;Mo, Hyoung-Ho;Lee, Doo-Hyung;Shin, Key-Il;Cho, Ki-Jong
    • Korean journal of applied entomology
    • /
    • v.51 no.3
    • /
    • pp.235-243
    • /
    • 2012
  • Population dynamics of the American serpentine leafminer, Liriomyza trifolii (Burgess), were observed and modeled in order to compare the effects of air and tomato leaf temperatures inside a greenhouse using DYMEX model builder and simulator (pre-programed module based simulation programs developed by CSIRO, Australia). The DYMEX model simulator consisted of a series of modules with the parameters of temperature dependent development and oviposition models of L. trifolii were incorporated from pre-published data. Leaf surface temperatures of cherry tomato leaves (cv. 'Koko') were monitored according to three tomato plant positions (top, > 1.8 m above the ground level; middle, 0.9 - 1.2 m; bottom, 0.3 - 0.5 m) using an infrared temperature gun. Air temperature was monitored at the same three positions using a self-contained temperature logger. Data sets for the observed air temperature and average leaf surface temperatures were collected (top and bottom surfaces), and incorporated into the DYMEX simulator in order to compare the effects of air and leaf surface temperature on the population dynamics of L. trifolii. The initial population consisted of 50 eggs, which were laid by five female L. trifolii in early June. The number of L. trifolii larvae was counted by visual inspection of the tomato plants in order to verify the performance of DYMEX simulation. The egg, pupa, and adult stage of L. trifolii could not be counted due to its infeasible of visual inspection. A significant positive correlation between the observed and the predicted numbers of larvae was found when the leaf surface temperatures were incorporated into the DYMEX simulation (r = 0.97, p < 0.01), but no significant positive correlation was observed with air temperatures(r = 0.40, p = 0.18). This study demonstrated that the population dynamics of L. trifolii was affected greatly by the leaf temperatures, though to little discernible degree by the air temperatures, and thus the leaf surface temperature should be for a consideration in the management of L. trifolii within cherry tomato greenhouses.