Browse > Article
http://dx.doi.org/10.5656/KSAE.2019.04.1.063

Using Viable Eggs to Determine Oviposition Models and Life Table Analysis of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae)  

Ahn, Jeong Joon (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA)
Choi, Kyoung San (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA)
Koh, Sang Wook (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA)
Publication Information
Korean journal of applied entomology / v.58, no.2, 2019 , pp. 111-120 More about this Journal
Abstract
Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) is an economically important insect pest of soybean and fruit trees. We investigated the temperature effects on the adult fecundity and longevity, and determined the parameters of oviposition models and life table at different constant temperatures 15.8, 19.7, 24.0, 27.8, 32.6, 34.0, and $35.5^{\circ}C$. R. pedestris females reproduced successfully from 19.7 to $35.5^{\circ}C$ except $15.8^{\circ}C$. The longevity of R. pedestris was longest at $15.8^{\circ}C$ and it decreased with increasing temperature (76.6 days at $19.7^{\circ}C$ and 20.6 days at $35.5^{\circ}C$). The number of total eggs and viable eggs was highest at $24.0^{\circ}C$ (193.5 and 151.2). Egg hatchability was highest at $27.8^{\circ}C$ (84.0%). We compared the results of oviposition models and life table parameters using both total eggs and viable eggs. The parameter value (c: the maximum reproductive capacity) (190 eggs) of temperature dependent total fecundity model using total eggs was higher than that of the model using viable eggs. When we analyzed the life table parameter the values of net reproductive rate and mean generation time using viable eggs were lower than those using total eggs. The oviposition models and life table analysis using viable eggs will be helpful to understand the real population transition of R. pedestris in agricultural system.
Keywords
Riptortus pedestris; Temperature; Hatchability; Oviposition model; Life table analysis;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Ahn, J.J., Choi, K.S., Koh, S., 2019. Effects of temperature on the development, fecundity, and life table parameters of Riptortus pedestris (Hemiptera: Alydidae). Appl. Entomol. Zool. 54, 63-74.   DOI
2 Awmack, C.S., Leather, S.R., 2002. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817-844.   DOI
3 Baki, A.A., Jung, J.K., Maharjan, R., Yi, H., Ahn, J.J., Gu, X., Kim, Y., 2018. Application of insulin signaling to predict insect growth rate in Maruca vitrata (Lepidoptera: Crambidae). PLos One 13, e0204935.   DOI
4 Berger, D., Walters, R., Gotthard, K., 2008. What limits insect fecundity? Body size and temperature-dependent egg maturation and oviposition in a butterfly. Funct. Ecol. 22, 523-529.   DOI
5 Bochdanovits, Z., de Jong G., 2003. Experimental evolution in Drosophila melanogaster: interaction of temperature and food quality selection regimes. Evolution 57, 1829-1836.   DOI
6 Cho, J.R., Kim, J.-H., Choi, B.-R., Seo, B.-Y., Kim, K.-H., Woo, J.C., Park, C.-G., Ahn, J.J., 2018. Thermal effects on the development, fecundity and life table parameters of Aphis craccivora Koch (Hemiptera: Aphididae) on yardlong bean (Vigna unguiculata subsp. sesquipedalis (L.)). Korean J. Appl. Entomol. 57, 261-269.   DOI
7 Huey, R.B., Berrigan, D., 2001. Temperature, demography and ectotherm fitness. Am. Entomol. 158, 204-210.
8 Jandel Scientific, 1994. TableCurve User's Manual San Rafael, CA.
9 Jha, R.K., Chi, H., Tang, L.-C., 2012. Effects of survival rate and fecundity on the intrinsic rate of increase of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Formosan Entomol. 32, 223-235.
10 Kim, D.-S., Lee, J.-H., 2010. A population model for the peach fruit moth, Carposina sasakii Matsumaur (Lepidoptera: Carposinidae) in a Korean orchard system. Ecol. Modell. 221, 268-280.   DOI
11 Kim, D.-S., Lee, J.-H., 2003. Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Ecol. Modell. 162, 145-153.   DOI
12 Kim, H., Baek S., Lee, J.-H., 2018. Temperature-dependent development and oviposition models of Leptocorisa chinensis Dallas (Hemiptera: Alydidae). J. Asia-Pac. Entomol. 21, 244-251.   DOI
13 Kim, H., Baek, S., Kim, S., Lee, S.-Y., Lee, J.-H., 2009. Temperaturedependent development and oviposition models of Riptortus clavatus (Thunberg) (Hemiptera: Alydidae). Appl. Entomol. Zool. 44, 515-523.   DOI
14 Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen, R. 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75.   DOI
15 Lee, H., Jung, J.-K., Im, J.S., Park, M., Lee, S., Lee, J.-H., 2015. Predicting the occurrence of generation for Riptortus pedestris (Fabricius) using their body color. Korean J. Appl. Entomol. 54, 431-435.   DOI
16 Lee, J., Baek, S., Kang, C., Lee, Y.S., Lee, Y., Lee, J.-H., 2018. Temperature-dependent development and oviposition models of Ramulus irregulariterdentatus (Phasmida: Phasmatidae). J. Asia-Pac. Entomol. 21, 903-913.   DOI
17 Mou, D.-F., Lee, C.-C., Smith, C.L., Chi, H., 2015. Using viable eggs to accurately determine the demographic and predation potential of Harmonia dimidiate (Coleoptera: Coccinellidae). J. Appl. Entomol. 139, 579-291.   DOI
18 Lee, Y.S., Baek, S., Lee, J., Lee, H.A., Lee, J.-H., 2018. Temperaturedependent development and oviposition models of Illeis koebelei (Coleoptera: Coccinellidae). J. Asia-Pac. Entomol. 21, 984-993.   DOI
19 Maia, A.H.N., Luiz, A.J.B., Campanhola, C., 2000. Statistical inference on associated fertility life table parameters using Jackknife technique: computational aspects. J. Econ. Entomol. 93, 511-518.   DOI
20 Meyer, J.S., Ingersoll, C.G., McDonald, L.L., Boyce, M.S., 1986. Estimating uncertainty in population growth rates: Jackknife vs. bootstrap techniques. Ecology 67, 1156-1166.   DOI
21 Park, C.-G., Park, H.-H., Seo, B.-Y., 2017. Temperature-dependent oviposition model and life table parameters of Parominus exiguous (Distant) (Hemiptear: Lygaeidae) growing on rice. Korean J. Appl. Entomol. 56, 387-394.   DOI
22 Park, C.-G., Yum, K.-H., Lee, S.-K., Lee, S.-G., 2015. Construction and evaluation of cohort based model for predicting population dynamics of Riptortus pedestris (Fabricicus) (Hemiptera: Alydidae) using Dymex. Korean J. Appl. Entomol. 54, 73-81.   DOI
23 Park, J.-J., Mo, H.-H., Lee, D.-H., Shin, K.-I., Cho, K., 2012. Modelling and validation of population dynamics of the American serpentine leafminer (Liriomyza trifolii) using leaf surface temperatures of greenhouses cherry tomatoes. Korea J. Appl. Entomol. 51, 235-243.   DOI
24 Saska, P., Skuhrovec, J., Lukas, J., Vlach, M., Chi, H., Tuan, S.-J., Honek, A., 2017. Treating prey with glyphosate does not alter the demographic parameters and predation of the Harmonia axyridis (Coleoptera: Coccinellidae). J. Econ. Entomol. 110, 392-399.
25 Pinder III, J.E., Wiener, J.G., Smith, M.H., 1978. The Weibull distribution: a new method of summarizing survivorship data. Ecology 59, 175-179.   DOI
26 Roy, S., Saha, T.T., Zou, Z., Raikhel, A.S., 2018. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 63, 489-511.   DOI
27 SAS Institute. 2002. SAS user's guide; statistics version 9.1ed. SAS Institute, Cary, NC.
28 Schowalte, T.D. 2011. Insect ecology: An ecosystem approach, 3rd ed., Academic Press. CA.
29 Sugawara, R., Ullah, M. S., Ho, C.-C., Gokce, A., Chi, H., Gotoh, T., 2017. Temperature-dependent demography of two closely related predatory mites Neoseiulus womersleyi and N. longispinosus (Acari: Phytoseiidae). J. Econ. Entomol. 110, 1533-1546.   DOI
30 Wagner, T.L., Wu, H.I., Sharpe, P.J.H., Schoolfield, R.M., Coulson, B.N., 1984. Modeling insect development rates: A literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77, 208-225.   DOI
31 Weibull, W., 1951. A statistical distribution functions with wide applicability. J. Appl. Mech. 18, 293-297.   DOI