• Title/Summary/Keyword: adsorbed oxygen

Search Result 155, Processing Time 0.027 seconds

Study on the Seasoning Effect for Amorphous In-Ga-Zn-O Thin Film Transistors with Soluble Hybrid Passivation

  • Yun, Su-Bok;Kim, Du-Hyeon;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.256-256
    • /
    • 2012
  • Oxide semiconductors such as zinc tin oxide (ZTO) or indium gallium zinc oxide (IGZO) have attracted a lot of research interest owing to their high potential for application as thin film transistors (TFTs) [1,2]. However, the instability of oxide TFTs remains as an obstacle to overcome for practical applications to electronic devices. Several studies have reported that the electrical characteristics of ZnO-based transistors are very sensitive to oxygen, hydrogen, and water [3,4,5]. To improve the reliability issue for the amorphous InGaZnO (a-IGZO) thin-film transistor, back channel passivation layer is essential for the long term bias stability. In this study, we investigated the instability of amorphous indium-gallium-zinc-oxide (IGZO) thin film transistors (TFTs) by the back channel contaminations. The effect of back channel contaminations (humidity or oxygen) on oxide transistor is of importance because it might affect the transistor performance. To remove this environmental condition, we performed vacuum seasoning before the deposition of hybrid passivation layer and acquired improved stability. It was found that vacuum seasoning can remove the back channel contamination if a-IGZO film. Therefore, to achieve highly stable oxide TFTs we suggest that adsorbed chemical gas molecules have to be eliminated from the back-channel prior to forming the passivation layers.

  • PDF

Catalytic Combustion of Benzene over Metal Ion-Substituted Y-Type Zeolites (금속이온이 치환된 Y형 제올라이트에서 벤젠의 촉매연소반응)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.161-167
    • /
    • 2016
  • Catalytic combustion of benzene over various metal cation-exchanged zeolites has been investigated. Y(4.8)-type zeolite showed the highest activity among the used zeolites and Cu/Y(4.8) catalyst also showed the highest activity among metal cation/ Y(4.8) zeolites. The catalytic activity increased according to the amount of adsorbed oxygen acquired from O2 TPD results. The catalytic activity also increased with an increase of Cu cation concentration on Cu/Y(4.8) catalysts. The conversion of benzene on the combustion reaction depended on not benzene concentration but the oxygen concentration. In addition, the introduction of water into reactants decreased the catalytic activity.

Coverage-dependent adsorption behavior of monoethanolamine on TiO2 (110)

  • Sohn, So-Dam;Kim, Su-Hwan;Kwak, Sang-Kyu;Shin, Hyung-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.126-126
    • /
    • 2016
  • Understanding adsorption behavior organic molecules at oxide surfaces is very important for the application of organic-inorganic hybrid materials. Recently, monoethanolamine (MEA) adsorbed on $TiO_2$ surface has received great interests because it can lower the work function of $TiO_2$ in photo-electronic devices such as OLED and solar cells. In this study, we investigated the role of surface defects in adsorption behaviors of MEA at the rutile $TiO_2$ (110) surface by combined study of scanning tunneling microscopy and density functional theory calculations. Our results revealed that oxygen vacancy is the most stable adsorption site for MEA on $TiO_2$ (110) surface at low coverage. As coverage increases, the oxygen vacancies are occupied with the molecules and MEA molecules start to adsorb at Ti rows at higher coverages. Our results show that the defects at oxide surfaces and the intermolecular interactions are important factors for determining stable adsorption structure of MEA at $TiO_2$ (110) surfaces.

  • PDF

Zeolite-catalyzed Isomerization of 1-Hexene to trans-2-Hexene: An ONIOM Study

  • Li, Yan-Feng;Zhu, Ji-Qin;Liu, Hui;He, Peng;Wang, Peng;Tian, Hui-Ping
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1851-1858
    • /
    • 2011
  • Details of the double-bond isomerization of 1-hexene over H-ZSM-5 were clarified using density functional theory. It is found that the reaction proceeds by a mechanism which involves the Br${\o}$nsted acid part of the zeolite solely. According to this mechanism, 1-hexene is first physically adsorbed on the acidic site, and then, the acidic proton transfers to one carbon atom of the double bond, while the other carbon atom of the double bond bonds with the Br${\o}$nsted host oxygen, yielding a stable alkoxy intermediate. Thereafter, the Br${\o}$nsted host oxygen abstracts a hydrogen atom from the $C_6H_{13}$ fragment and the C-O bond is broken, restoring the acidic site and yielding trans-2-hexene. The calculated activation barrier is 12.65 kcal/mol, which is in good agreement with the experimental value. These results well explain the energetic aspects during the course of double-bond isomerization and extend the understanding of the nature of the zeolite active sites.

Interactive CO2 Adsorption on the BaO (100) Surface: A Density Functional Theory (DFT) Study

  • Kwon, Soon-Chul;Hwang, Jung-Bae;Lee, Han-Lim;Lee, Wang-Ro
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2219-2222
    • /
    • 2010
  • A density functional theory (DFT) study of $CO_2$ adsorption on barium oxide (BaO) adsorbents is conducted to understand the chemical activity of the oxygen site on the BaO (100) surface. This study evaluated the adsorption energies and geometries of a single $CO_2$ molecule and a pair of $CO_2$ molecules on the BaO (100) surface. A quantum calculation was performed to obtain information on the molecular structures and molecular reaction mechanisms; the results of the calculation indicated that $CO_2$ was adsorbed on BaO to form a stable surface carbonate with strong chemisorption. To study the interactive $CO_2$ adsorption on the BaO (100) surface, a pair of $CO_2$ molecules was bound to neighboring and distant oxygen sites. The interactive $CO_2$ adsorption on the BaO surface was found to slightly weaken the adsorption energy, owing to the interaction between $CO_2$ molecules.

Electrical Characteristics of Si-O Superlattice Diode (Si-O 초격자 다이오드의 전기적 특성)

  • Park, Sung-Woo;Seo, Yong-Jin;Jeong, So-Young;Park, Chang-Jun;Kim, Ki-Wook;Kim, Sang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.175-177
    • /
    • 2002
  • Electrical characteristics of the Si-O superlattice diode as a function of annealing conditions have been studied. The nanocrystalline silicon/adsorbed oxygen superlattice formed by molecular beam epitaxy (MBE) system. Consequently, the experimental results of superlattice diode with multilayer Si-O structure showed the stable and good insulating behavior with high breakdown voltage. This is very useful promise for Si-based optoelectronic and quantum device as well as for the replacement of silicon-on-insulator (SOI) in ultra high speed and lower power CMOS devices in the future, and it can be readily integrated with silicon ULSI processing.

  • PDF

Inter-row Adsorption Configuration and Stability of Threonine Adsorbed on the Ge(100) Surfaces

  • Lee, Myungjin;Park, Youngchan;Jeong, Hyuk;Lee, Hangil
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1055-1060
    • /
    • 2013
  • The adsorption structures of threonine on the Ge(100) surface were investigated using core-level photoemission spectroscopy (CLPES) in conjunction with density functional theory (DFT) calculations. CLPES measurements were performed to identify the experimentally preferred adsorption structure. The preferred structure indicated the relative reactivities of the carboxyl and hydroxymethyl groups as electron donors to the Ge(100) surface during adsorption. The core-level C 1s, N 1s, and O 1s CLPES spectra indicated that the carboxyl oxygen competed more strongly with the hydroxymethyl oxygen during the adsorption reaction. Three among six possible adsorption structures were identified as energetically favorable using DFT calculation methods that considered the inter- and intra-bonding configurations upon adsorption onto the Ge(100) surface. These structures were O-H dissociated N dative inter bonding, O-H dissociated N dative intra bonding, O-H dissociation bonding. One of the adsorption structures: O-H dissociated N dative inter bonding was predicted to be stable in light of the transition state energies. We thus confirmed that the most favorable adsorption structure is the O-H dissociated N dative-inter bonding structure using CLPES and DFT calculation.

CO-Tolerant PtMo/C Fuel Cell Catalyst for H2 Oxidation

  • Bang, Jin-Ho;Kim, Ha-Suck
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3660-3665
    • /
    • 2011
  • CO-tolerant PtMo/C alloy electrocatalyst was prepared by a colloidal method, and its electrocatalytic activity toward CO oxidation was investigated. Electrochemical study revealed that the alloy catalyst significantly enhanced catalytic activity toward the electro-oxidation of CO compared to Pt/C counterpart. Cyclic voltammetry suggested that Mo plays an important role in promoting CO electro-oxidation by facilitating the formation of active oxygen species. The effect of Mo on the electronic structure of Pt was investigated using X-ray absorption spectroscopy to elucidate the synergetic effect of alloying. Our in-depth spectroscopic analysis revealed that CO is less strongly adsorbed on PtMo/C catalyst than on Pt/C catalyst due to the modulation of the electronic structure of Pt d-band. Our investigation shows that the enhanced CO electrooxidation in PtMo alloy electrocatalyst is originated from two factors; one comes from the facile formation of active oxygen species, and the other from the weak interaction between Pt and CO.

XPS Studies of Oxygen Adsorption on Polycrystalline Nickel Surface (II)

  • Lee Soon-Bo;Boo Jin-Hyo;Ham Kyoung-Hee;Ahn Woon-Sun;Lee Kwang-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.32-36
    • /
    • 1988
  • The isotherms of oxygen chemisorption on polycrystaline nickel surface are obtained at various temperatures between 298K and 523K from intensity measurernent of O 1s xps peaks, and the activation energy of the chemisorption is estimated as a function of the coverage. The activation energy extrapolated to zero coverage is found to be -5.9 kJ/mol. The negative activation energy can be taken as a strong implication of the propriety of a currently accepted chemisorption model, in which molecularly adsorbed precursor state is assumed to exist. The residence time of this precursor state is estimated by assuming a molecularly physisorbed state for the precursor state and assuming a pairwise interaction energy of Lennard-Jones 12-6 potential between an admolecule and each substrate nickel atom. The sticking coefficients are also calculated from the isotherms. The calculated results agree well with those obtained by others with different methods.

Kinetics and Mechanism of the Oxidation of Carbon Monoxide on CoO-$\alpha-Fe_2O_3$ Catalysts

  • Kim, Keu Hong;Choi, Jae Shi;Kim, Young Bae
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.389-393
    • /
    • 1987
  • The oxidation of carbon monoxide by gaseous oxygen on 0.53, 1.02, and 1.51 mol $\%$CoO-doped $-Fe_2O_3$ catalysts has been investigated in the temperature range from 340 to 480$^{\circ}C$ under various CO and $O_2$ partial pressures. The oxidation rates have been correlated with 1.5-order kinetics; the 0.5-order with respect to $O_2$ and the first-order with respect to CO. In the above temperature range, the activation energy is 0.34 $\pm$ 0.01 eV${\cdot}$$mol^{-1}$. The electrical conductivity of 0.53, 1.02, and 1.51 mol %CoO-doped $\alpha$-$Fe_2O_3$ has been measured at 350$^{\circ}C$ under various $P_{CO}and $P_{O_2}$. From the conductivity data it was found that $O_2$ was adsorbed on Vo formed by doping with CoO, while CO appeared essentially to be chemisorbed on the lattice oxygen of the catalyst surface. The proposed oxidation mechanism and the dominant defect were supported by the agreement between the kinetic data and conductivities.