Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.6.1851

Zeolite-catalyzed Isomerization of 1-Hexene to trans-2-Hexene: An ONIOM Study  

Li, Yan-Feng (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology)
Zhu, Ji-Qin (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology)
Liu, Hui (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology)
He, Peng (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology)
Wang, Peng (Research Institute of Petroleum Processing, SINOPEC)
Tian, Hui-Ping (Research Institute of Petroleum Processing, SINOPEC)
Publication Information
Abstract
Details of the double-bond isomerization of 1-hexene over H-ZSM-5 were clarified using density functional theory. It is found that the reaction proceeds by a mechanism which involves the Br${\o}$nsted acid part of the zeolite solely. According to this mechanism, 1-hexene is first physically adsorbed on the acidic site, and then, the acidic proton transfers to one carbon atom of the double bond, while the other carbon atom of the double bond bonds with the Br${\o}$nsted host oxygen, yielding a stable alkoxy intermediate. Thereafter, the Br${\o}$nsted host oxygen abstracts a hydrogen atom from the $C_6H_{13}$ fragment and the C-O bond is broken, restoring the acidic site and yielding trans-2-hexene. The calculated activation barrier is 12.65 kcal/mol, which is in good agreement with the experimental value. These results well explain the energetic aspects during the course of double-bond isomerization and extend the understanding of the nature of the zeolite active sites.
Keywords
Hexene; ZSM-5; Double-bond isomerization; Active site; Density functional theory;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
  • Reference
1 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.   DOI   ScienceOn
2 Becke, A. D. Phys. Rev. A 1988, 38, 3098.   DOI
3 Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024.   DOI
4 de Albuquerque Lins, J. O. M.; Nascimento, M. A. C. J. Mol. Struc: THEOCHEM. 1996, 371, 237.   DOI   ScienceOn
5 Esteves, P. M.; Nascimento, M. A. C.; Mota, C. J. A. J. Phys. Chem. B 1999, 103, 10417.   DOI   ScienceOn
6 Zygmunt, S. A.; Mueller, R. M.; Curtiss, L. A.; Iton, L. E. J. Mol. Struc: THEOCHEM. 1998, 430, 9.   DOI   ScienceOn
7 Panjan, W.; Limtrakul, J. J. Mol. Struct. 2003, 654, 35.   DOI   ScienceOn
8 Brand, H. V.; Curtiss, L. A.; Iton, L. E. J. Phys. Chem. 1993, 97, 12773.   DOI   ScienceOn
9 Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.   DOI   ScienceOn
10 Fottinger, K.; Kinger, G.; Vinek, H. Appl. Catal. A: Gen. 2003, 249, 205.   DOI   ScienceOn
11 Krossner, M.; Sauer, J. J. Phys. Chem. 1996, 100, 6199.   DOI   ScienceOn
12 Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
13 Pariente, S.; Trens, P.; Fajula, F.; Di Renzo, F.; Tanchoux, N. Appl. Catal. A: Gen. 2006, 307, 51.   DOI   ScienceOn
14 Clark, M. C.; Subramaniam, B. AIChE J. 1999, 45, 1559.   DOI   ScienceOn
15 Kondo, J. N.; Wakabayashi, F.; Domen, K. J. Phys. Chem. B 1998, 102, 2259.   DOI   ScienceOn
16 Haw, J. F.; Richardson, B. R.; Oshiro, I. S.; Lazo, N. D.; Speed, J. A. J. Am. Chem. Soc. 1989, 111, 2052.   DOI   ScienceOn
17 Aronson, M. T.; Gorte, R. J.; Farneth, W. E.; White, D. J. Am. Chem. Soc. 1989, 111, 840.   DOI   ScienceOn
18 Kondo, J. N.; Wakabayashi, F.; Domen, K. Catal. Lett. 1998, 53, 215.   DOI
19 Benco, L.; Demuth, T.; Hafner, J.; Hutschka, F.; Toulhoat, H. J. Catal. 2002, 205, 147.   DOI   ScienceOn
20 Bhan, A.; Joshi, Y. V.; Delgass, W. N.; Thomson, K. T. J. Phys. Chem. B 2003, 107, 10476.   DOI   ScienceOn
21 Li, Y. F.; He, P.; Zhu, J. Q.; Liu, H.; Shao, Q.; Tian, H. P. J. Mol. Struc: THEOCHEM. 2010, 940, 135.   DOI   ScienceOn
22 Rozanska, X.; van Santen, R. A.; Hutschka, F.; Hafner, J. J. Am. Chem. Soc. 2001, 123, 7655.   DOI   ScienceOn
23 Lomratsiri, J.; Probst, M.; Limtrakul, J. J. Mol. Graphics Modell. 2006, 25, 219.   DOI   ScienceOn
24 Namuangruk, S.; Khongpracha, P.; Pantu, P.; Limtrakul, J. J. Phys. Chem. B 2006, 110, 25950.   DOI   ScienceOn
25 Jacobs, P. A.; Martens, J. A.; Weitkamp, J.; Beyer, H. K. Faraday Discuss. Chem. Soc. 1981, 72, 353.   DOI
26 Mortier, W. J.; Sauer, J.; Lercher, J. A.; Noller, H. J. Phys. Chem. 1984, 88, 905.   DOI
27 Trombetta, M.; Armaroli, T.; Alejandre, A. G.; Solis, J. R.; Busca, G. Appl. Catal. A: Gen. 2000, 192, 125.   DOI   ScienceOn
28 Lermer, H.; Draeger, M.; Steffen, J.; Unger, K. K. Zeolites 1985, 5, 131.   DOI   ScienceOn
29 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. Gaussian 03, Revision D.01; Gaussian Inc., Wallingford CT, 2004.
30 Lechert, H.; Dimitrov, C.; Bezuhanova, C.; Nenova, V. J. Catal. 1983, 80, 457.   DOI   ScienceOn
31 Bezouhanova, C.; Lechert, H.; Taralanska, G.; Meyer, A. React. Kinet. Catal. Lett. 1989, 40, 209.   DOI
32 Neurock, M.; van Santen, R. A. Catal. Today 1999, 50, 445.   DOI   ScienceOn
33 Keane, M. A.; Alyea, E. C. J. Mol. Catal. A: Chem. 1996, 106, 277.   DOI   ScienceOn
34 Abbot, J.; Wojciechowski, B. W. J. Catal. 1984, 90, 270.   DOI   ScienceOn
35 Abbot, J.; Corma, A.; Wojciechowski, B. W. J. Catal. 1985, 92, 398.   DOI   ScienceOn
36 Anderson, J. R.; Chang, Y. F.; Western, R. J. J. Catal. 1989, 118, 467.
37 Campbell, I. M. Catalysis at Surfaces; Springer: 1988.
38 Brouwer, D. M. J. Catal. 1962, 1, 22.   DOI   ScienceOn
39 Pines, H. The Chemistry of Catalytic Hydrocarbon Conversions; Academic Press: New York, 1981.
40 Burwell, R. L.; Shim, K. C.; Rowlinsox, H. C. J. Am. Chem. Soc. 1957, 79, 5142.   DOI
41 Rogers, D. W.; Crooks, E.; Dejroongruang, K. J. Chem. Thermodyn. 1987, 19, 1209.   DOI
42 Perez-Luna, M.; Cosultchi, A.; Toledo-Antonio, J. A.; Diaz-Garcia, L. Catal. Lett. 2009, 128, 290.   DOI
43 Naragon, E. A. Ind. Eng. Chem. 1950, 42, 2490.   DOI
44 Ishikawa, H.; Yoda, E.; Kondo, J. N.; Wakabayashi, F.; Domen, K. J. Phys. Chem. B 1999, 103, 5681.   DOI   ScienceOn
45 Geobaldo, F.; Spoto, G.; Bordiga, S.; Lamberti, C.; Zecchina, A. J. Chem. Soc., Faraday Trans. 1997, 93, 1243.   DOI   ScienceOn
46 Corma, A. Chem. Rev. 1995, 95, 559.   DOI   ScienceOn
47 Milas, I.; Nascimento, M. A. C. Chem. Phys. Lett. 2001, 338, 67.   DOI   ScienceOn
48 Venuto, P. B. Microporous Mater. 1994, 2, 297.   DOI   ScienceOn
49 Ding, B. J.; Huang, S. P.; Wang, W. C. Appl. Surf. Sci. 2008, 254, 4944.   DOI   ScienceOn
50 Stocker, M. Micropor. Mesopor. Mater. 1999, 29, 3.   DOI   ScienceOn
51 Zardkoohi, M.; Haw, J. F.; Lunsford, J. H. J. Am. Chem. Soc. 1987, 109, 5278.   DOI
52 Jin, H.; Prasetyanto, E. A.; Jiang, N.; Oh, S.-M.; Park, S.-E. Appl. Surf. Sci. 2010, 256, 5508.   DOI   ScienceOn
53 Kazansky, V. B. Acc. Chem. Res. 1991, 24, 379.   DOI
54 Gates, B. C. Catalytic Chemistry; John Wiley and Sons: New York, 1991.
55 Dunning, H. N. Ind. Eng. Chem. 1953, 45, 551.   DOI
56 Bounaceur, R.; Warth, V.; Sirjean, B.; Glaude, P. A.; Fournet, R.; Battin-Leclerc, F. Proc. Combust. Inst. 2009, 32, 387.   DOI   ScienceOn