• 제목/요약/키워드: admixtures for high strength concrete

검색결과 120건 처리시간 0.035초

레미콘 공장에서 적용 가능한 고강도 콘크리트 및 시공성에 관한 연구 (The Application of High Strength Concrete in Batcher Plant and its Workability)

  • 김정식;김봉현;정진;이재삼;강훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.69-74
    • /
    • 1998
  • Concrete has a many problems to apply high rise building of its low strength to weight and low ductility, compared to steel products. Therefore, it is necessary to make high strength concrete for applying to night rise building. In the experiment, the high strength concrete was made in variable of unit weight of binder, water to binder ratio(W/B), and sand to aggregate ratio(S/a) using batcher plant. As a result, it was possible to make high strength concrete using only materials for ordinary concrete without admixtures such like silica fume in batcher plant.

  • PDF

메타카올린 및 이산화규소를 활용(活用)한 콘크리트의 역학적(力學的) 특성(特性) (Mechanical Properties of Concrete Using Metakaolin and Silicon Dioxide)

  • 김남욱;김춘호
    • 자원리싸이클링
    • /
    • 제21권2호
    • /
    • pp.47-52
    • /
    • 2012
  • 콘크리트 구조물 형식의 다양화에 따라 요구되는 콘크리트의 품질 또한 고성능화가 필수적으로 되고 있다. 콘크리트의 고성능화는 혼화재료의 사용을 통하여 도달되고 있는데 일반적으로 고강도 콘크리트를 제작하기 위해서는 실리카 흄을 사용하고 있다. 실리카 흄은 역학적 성능은 우수하나 경제적 이지 못해 최근 이의 대체재로서 메타카올린의 연구가 많이 진행되고 있다. 본 연구는 실리카 흄의 대체재로 메타카올린을 사용하였으며 이에 따른 유동성의 저하를 방지하기 위해 이산화규소를 사용한 콘크리트를 제작하여 각 종 역학적 특성을 검토하였다.

초고강도 강섬유 보강 콘크리트의 성능에 미치는 믹서의 영향 (Effect of Mixer on the Performance of Ultra-High Strength Steel Reinforced Concrete)

  • 박정준;고경택;류금성;강수태;김성욱;한상묵
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.549-552
    • /
    • 2006
  • Generally the ultra-high strength steel reinforced concrete has rich mix composition composed of high-strength type mineral admixtures and as a result of very low water-binder ratio(about under w/b=25%), it reveals ultra-high compressive strength(about over 100Mpa). Also, in order to obtain sufficient toughness after construction, we usually mix a large quantity steel fiber with ultra-high strength steel reinforced concrete therefore we must use proper mixer for workability. When we make the ultra-high strength steel reinforced concrete we need more long mixing time or much super-plasticizer than when we manufacture normal concrete. These bring about economical problems and performance deterioration. Therefore, in this study, in order to manufacture easily ultra-high strength steel reinforced concrete we develope a dedicated mixer for ultra-high strength steel reinforced concrete with high speed type. It carried out the examination for comparison between the dedicated and general type mixer, the analysis and counterplan of the point at issue when we manufacture ultra-high strength steel reinforced concrete by the dedicated mixer.

  • PDF

고강도 콘크리트의 건조수축 (Drying Shrinkage of High-Strength Concrete)

  • 임준영;정승호;이회근;이광명
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.437-442
    • /
    • 2002
  • Drying shrinkage is the decrease in the volume of a concrete element when it loses moisture by evaporating. Because of low water/binder ratio(W/B) and the use of chemical and mineral admixtures for high-strength concrete, the evolutions of moisture and the rate of cement hydration in high- strength concrete are significantly different from those in normal strength concrete. In this study, the drying shrinkage of high-strength concrete with and without fly ash was measured up to the age of 200 days. From the experimental test results, it was observed that the drying shrinkage decreased as the W/B decreased. As the W/B is lowered from 0.50 to 0.27, the difference of drying shrinkage between the fly ash concrete and the ordinary concrete is gradually increased.

  • PDF

Fundamental Properties of Antiwashout Underwater Concrete Mixed with Mineral Admixtures

  • Han-Young, Moon;Kook-Jae, Shin;Yong-Kyu, Song
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.457-460
    • /
    • 2003
  • This paper discusses laboratory evaluations to assess the physical properties of antiwashout underwater concrete (AWC) containing pozzolanic materials such as fly ash (FA), blast furnace slag (SG) and metakaolin(MK). For the experiments, pH value, suspended solids, slump flow, efflux time and compressive strength were tested. According to the results from compressive strength test, MK10 showed the very high compressive strength characteristic during the entire curing days, but the rate of strength development was decreased as time goes by.

  • PDF

시멘트 콘크리트의 배합조건에 따른 pH 저감에 관한 연구 (A Study on the pH Reduction of Cement Concrete with Various Mixing Conditions)

  • 조영국
    • 한국건축시공학회지
    • /
    • 제8권4호
    • /
    • pp.79-85
    • /
    • 2008
  • The purpose of this study is to evaluate the mix design of pH reducing cement concrete which can be used for environment-friendly concrete. Cement pastes and concretes are prepared with water-binder ratios and various admixtures such as blast-furnace slag, fly ash and recycled cement, and tested for compressive strength and pH. pH is measured through pore solution expressed from hydrated cement paste by special apparatus. From the test results, regardless of water-binder ratio, The pH of expressed pore solution from hydrated cement paste which is made of ordinary portland cement with blast-furnace slag, fly ash is decreased with increasing of admixtures content, and compressive strength is also slightly improved. The compressive strength of cement paste made of recycled cement which is burnt at $1000^{\circ}C$, for 2 hours is considerably increased compared with that of none-burnt recycled cement due to restoration of hydraulic property, but pH is a little higher. Porous concrete with ordinary portland cement has high pH in the range of 12.22 to 12.59, however, that is reduced to the range of 8.95 to 10.39 by carbonation at the surface of porous concrete. The pH reduction of porous concrete is possible by various admixture addition, however their degrees are very slight. Therefore, to reduce the pH considerably, carbonation method of porous concrete is better in pH reduction methods for plant survival condition of pH of 9.0 or less. In this study, it is apparent that pH for the environment-friendly porous concrete products used in the construction field can be suppressed by this carbonation method and various admixtures addition.

조강시멘트를 이용한 속경성 자기충전 콘크리트의 배합인자별 품질특성 및 활용에 관한 연구 (Study on the qualities & application of Super High Early Strength -Self Compact Concrete using Type III Cement for productabilities-)

  • 엄태선;임채용;유재상;이종열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.573-578
    • /
    • 2002
  • We carried out the feasibility study of super early self compacting concrete having the characteristics of 1 day demoulding without steam curing, high flowable concrete with self compacting, high strength and high durability etc. Here, We test and selected by several methods using high early cement with and without admixtures for the condition of super early strength self compacting concrete's manufacture (SSCC). We sucessed to meet at the goal of SSCC with 30∼35N/㎟ in 1 day, without steam curing and with slump flow about 60-65cm and suggest various concrete products to apply the developed SSCC for practical use in factory and in site place

  • PDF

혼화재 치환율 및 양생조건이 서중콘크리트의 압축강도에 미치는 영향 (The Effect of Replacement Ratio of Mineral Admixtures and Curing Condition on Compressive Strength of Hot Weather Concrete)

  • 공태웅;이수형;장재환;이한백
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.629-632
    • /
    • 2008
  • 콘크리트는 온도에 따른 품질변동이 큰 재료로서, 타설 후 소요의 품질을 확보하기 위해 계절특성파악 및 콘크리트 주위의 온 습도를 적절한 범위로 유지시켜 유해한 작용을 받지 않도록 주의해야 한다. 특히 하절기의 경우 높은 대기온도의 영향으로 초기재령에서 시멘트의 급속한 수화반응으로 유발하여 시멘트경화체 내부가 자기건조상태가 되어 결과적으로 자기수축에 의한 콘크리트의 강도저하를 발생시킬 수 있다. 그러므로 단위수량 및 단위시멘트량의 최소화 및 혼화재 사용 등 서중콘크리트의 수화열 저감을 통한 강도저하방지대책이 필요하다. 따라서 본 연구에서는 배합 및 양생온도조건이 콘크리트의 압축강도에 미치는 영향을 확인하고자 혼화재 치환율 변화, 콘크리트의 초기양생온도변화 및 양생조건변화에 따른 압축강도 특성을 비교 검토하였다.

  • PDF

수중불분리성 콘크리트 중의 철근부식 평가 (Estimation on Corrosion of Reinforcing bar in Antiwashout Underwater Concrete)

  • 문한영;김성수;김홍삼;김종필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.447-450
    • /
    • 2000
  • Recently, antiwashout underwater concrete has used for underwater structure such as high strength massive concrete structures. When, concrete is placed in seawater the quality and durability of concrete could be doubt to especcially because the amount of cement placed in the concrete can be diminished by flowing seawater. In this study, antiwashout underwater concrete mixed with mineral admixtures for improvement of properties was placed in air, water, and salt water. Half-cell potential and current density was of specimens which made under different conditions measured for estimating corrosion degree. The experimental results demostrate that corrosion resistantce in saltwater was little and mineral admixtures improved properties of concrete.

  • PDF

Fundamental Properties of Concrete Using the Ground Calcium Slurry Carbonate

  • Moon, Han-Young;Jung, Ho-Seop;Park, Doo-Sun
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.560-564
    • /
    • 2001
  • Nowadays, according to the trend of a high performance of concrete structure, the research results have been announced for the purpose to make the high quality. With this respect, we began research to use the Ground Calcium slurry Carbonate (GCC) to a concrete admixtures which ground the limestone until about $1.5mutextrm{m}$. In this paper, we examined the quality of GCC to fine out the value in use as the concrete admixtures. And mechanical properties of concrete using cement blended with GCC, silica fume and mixed two were investigated. It was result from this study that air contents of concrete replaced with GCC were constant regardless of replacement ratio, but the more GCC it had the use of, the less slump was measured. Especially 10% GCC concrete had a good result of compressive strength. In case of mixture with GCC and silica fume, the workability and compressive strength don't seem to be any problems. In the scope of this study it was indicated that the most reasonable replacement with GCC was 10% of cement weight as concrete admixture.

  • PDF