• Title/Summary/Keyword: admissible functions

Search Result 61, Processing Time 0.02 seconds

Flexural Vibrations of Rectangular Plates Having V-notches or Sharp Cracks (V노치 또는 예리한 균열을 가지는 직사각형 평판의 굽힘 진동)

  • 정희영;정의영;김주우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.336-343
    • /
    • 2004
  • This paper reports the first known free vibration data for thin rectangular plates with V-notches. The classical Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displacements. These sets include (1) mathematically complete algebraic-trigonometric polynomials which guarantee convergence to exact frequencies as sufficient terms are retained, and (2) corner functions which account for the bending moment singularities at the sharp reentrant corner of the Y-notch. Extensive convergence studies summarized herein confirm that the corner functions substantially enhance the convergence and accuracy of nondirectional frequencies for rectangular plates having the V-notch. In this paper, accurate frequencies and normalized contours of vibratory transverse displacement are presented for various notched plates, so that the effect of corner stress singularities may be understood.

Free vibrations of arbitrary quadrilateral thick plates with internal columns and uniform elastic edge supports by pb-2 Ritz method

  • Wu, L.H.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.267-288
    • /
    • 2012
  • Free vibration analysis of arbitrary quadrilateral thick plates with internal columns and elastic edge supports is presented by using the powerful pb-2 Ritz method and Reddy's third order shear deformation plate theory. The computing domain of arbitrary quadrilateral planform is mapped onto a standard square form by coordinate transformation. The versatile pb-2 Ritz functions defined by the product of a two-dimensional polynomial and a basic function are taken to be the admissible functions. Substituting these displacement functions into the energy functional and minimizing the total energy by differentiation, leads to a typical eigenvalue problem, which is solved by a standard eigenvalue solver. Stiffness and mass matrices are numerically integrated over the plate by using Gaussian quadrature. The accuracy and efficiency of the proposed method are demonstrated through several numerical examples by comparison and convergency studies. A lot of numerical results for reasonable natural frequency parameters of quadrilateral plates with different combinations of elastic boundary conditions and column supports at any locations are presented, which can be used as a benchmark for future studies in this area.

Differential Subordination and Superordination Results associated with Srivastava-Attiya Integral Operator

  • Prajapat, Jugal Kishore;Mishra, Ambuj Kumar
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.2
    • /
    • pp.233-244
    • /
    • 2017
  • Differential subordination and superordination results associated with a generalized Hurwitz-Lerch Zeta function in the open unit disk are obtained by investigating appropriate classes of admissible functions. In particular some inequalities for generalized Hurwitz-Lerch Zeta function are obtained.

Dynamic Analysis of Flexible Rotors Subjected to Torque and Force (토오크 및 힘을 받는 탄성 회전체계의 동적 해석)

  • 윤종섭;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.107-112
    • /
    • 1993
  • The effect of the applied direction and magnitude of loads on the stability and natural frequency of flexible rotors is analyzed, when the rotors are subject to nonconservative torque and force. The stability criterion derived from the energy and variational principle is discussed and a general Galerkin's method which utilizes admissible functions is employed for numerical analysis. Illustrative examples are treated to demonstrate the analytical developments.

  • PDF

Free Vibration of EllllIipticall and Circular Plates (타원형 및 원형 평판의 자유 진동)

  • 김찬수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1485-1492
    • /
    • 1992
  • While the vibration of circular plates were considered by many researchers, rather less attention is given to elliptical plates. In the present paper, the Rayleigh-Ritz mothod is used to obtain an eigenvalue equation for the free flexural vibration of thin elliptical plates having the classical free, simply suported or clmped boundary condition. Circular plates are included as a special case of the elliptical plates. Products of simple polynomials are used as the admissible functions and a recurrence relationship facilitates the evaluation of the necessary integrals. The analysis is developed for rectilinear orthotropic plates but the numerical results are given for isotropic plates with various aspect ratios.

Nonlinear response of a resonant viscoelastic microbeam under an electrical actuation

  • Zamanian, M.;Khadem, S.E.;Mahmoodi, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.387-407
    • /
    • 2010
  • In this paper, using perturbation and Galerkin method, the response of a resonant viscoelastic microbeam to an electric actuation is obtained. The microbeam is under axial load and electrical load. It is assumed that midplane is stretched, when the beam is deflected. The equation of motion is derived using the Newton's second law. The viscoelastic model is taken to be the Kelvin-Voigt model. In the first section, the static deflection is obtained using the Galerkin method. Exact linear symmetric mode shape of a straight beam and its deflection function under constant transverse load are used as admissible functions. So, an analytical expression that describes the static deflection at all points is obtained. Comparing the result with previous research show that using deflection function as admissible function decreases the computation errors and previous calculations volume. In the second section, the response of a microbeam resonator system under primary and secondary resonance excitation has been obtained by analytical multiple scale perturbation method combined with the Galerkin method. It is shown, that a small amount of viscoelastic damping has an important effect and causes to decrease the maximum amplitude of response, and to shift the resonance frequency. Also, it shown, that an increase of the DC voltage, ratio of the air gap to the microbeam thickness, tensile axial load, would increase the effect of viscoelastic damping, and an increase of the compressive axial load would decrease the effect of viscoelastic damping.

Ritz Mode Superposition Method in Frequency Domain (주파수 영역에서의 Ritz 모드 중첩법)

  • 주관정
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.33-37
    • /
    • 1989
  • According to the Rayleigh-Ritz approximation method, a solution can be represented as a finite series consisting of space-dependent functions, which satisfy all the geometric boundary conditions of the problem and appropriate smoothness requirement in the interior of the domain. In this paper, an efficient formulation for solving structural dynamics systems in frequency domain is presented. A general procedure called Ritz modes (or vectors) generation algorithm is used to generate the admissible functions, i.e. Ritz modes, Then, the use of direct superposition of the Ritz modes is utilized to reduce the size of the problem in spatial dimension via geometric coordinates projection. For the reduced system, the frequency domain approach is applied. Finally, a numerical example is presented to illustrate the effectiveness of the proposed method.

  • PDF

Flexural Vibration of Clamped and Simplv Supported Sectorial Plates with Combinations of Simply Supported and Free Radial Edges

  • Han, Bong-Ko;Kim, Joo-Woo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.214-225
    • /
    • 1999
  • An accurate method is presented for flexural vibrations of sectorial plates having simply supported-free and free-free radial edges, when the circular edge is either clamped or simply supported. The classical Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displacements. These sets consist of : (1) mathematically complete algebraic-trigonometric polynomials which gurantee convergence to exact frequencies as sufficient terms are retained, and (2) comer functions which account for the bending moment singularities at re-entrant comer of the radial edges having arbitrary edge conditions. Accurate (at least four significant figures) frequencies and normalized contours of the transverse vibratory displacement are presented for the spectra of corner angles [90$^{\circ}$, 180$^{\circ}$(semi-circular), 270$^{\circ}$, 300$^{\circ}$, 330$^{\circ}$, 350$^{\circ}$, 355$^{\circ}$, 360$^{\circ}$ (complete circular)] causing a re-entrant comer of the radial edges. Future solutions drawn from alternative numerical procedures and finite element techniques may be compared with these accurate results.

  • PDF

Free vibration analysis of arbitrary shape plates with simplified series function (단순급수함수를 이용한 임의 형상판의 자유진동 해석)

  • 정대근
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.345-352
    • /
    • 1995
  • A very simple and computationally efficient numerical method is developed for the free vibration of arbitrary shape plates. A set of two- dimensional simple series functions is used as an admissible displacement functions in the Rayleigh-Ritz method to obtain the natural frequencies for the arbitrary shape plates. From the prescribed starting function satisfying only the geometric boundary conditions, the higher terms in the series function are constructed with adding order of polynomial. Natural frequencies are obtained for the arbitrary shape plates, with combinational boundary conditions. The obtained numerical results are presented, some cases are verified with other numerical methods in the literature.

  • PDF

Failure mechanisms of externally prestressed composite beams with partial shear connection

  • Dall'Asta, A.;Dezi, L.;Leoni, G.
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.315-330
    • /
    • 2002
  • This paper proposes a model for analysing the non-linear behaviour of steel concrete composite beams prestressed by external slipping cables, taking into account the deformability of the interface shear connection. By assuming a suitable admissible displacement field for the composite beam, the balance condition is obtained by the virtual work principle. The solution is numerically achieved by approximating the unknown displacement functions as series of shape functions according to the Ritz method. The model is applied to real cases by showing the consequences of different connection levels between the concrete slab and the steel beam. Particular attention is focused on the limited ductility of the shear connection that may be the cause of premature failure of the composite girder.