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ABSTRACT

The effect of the applied direction and magnitude of
loads on the stability and natural frequency of flexible rotors
is analyzed, when the rotors are subject to nonconservative
torque and force. The stability criterion derived from the
energy and variational principle is discussed and a general
Galerkin's method which utilizes admissible functions is
employed for numerical analysis. Illustrative examples are
treated to demonstrate the analytical developments.

1.INTRODUCTION

A rotor-bearing system is seldom used alone without
being connected to a power transmission system. For
example, a pump is often connected to a motor with a
cooling fan through coupling and a turbopump in space
shuttle main engine is driven by a gas turbine. Thus such
rotor-bearing systems are often modeled as the flexible
rotors subjected to torque and force acting upon rotating
shafts in the longitudinal direction. On the other hand, the
torque and force acting upon disks are generated by the
impeller fluid resistance and the pressure difference between
impellers, respectively. As the rotational speed increases to
allow high power, these work loads may cause the
rotordynamic instability problems, leading to costly failures
in many cases.

For finding the critical speeds of rotating shafts
subjected to work loads, Willems and Holzer (1967), and
Eshleman and Eubanks (1969) employed the Galerkin's and
the analytic methods, respectively; Zorzi and Nelson (1980)
used the finite element method to study the effect of axial
torque on the dynamics of rotor-bearing-systems; Shich
(1982) studied, using the variational principle, the stability
of rotating circular and elliptic shafts subjected to
nonconservative loads; Yim, Noah, and Vance(1986)
investigated the effect of tangential load torque on the
dynamics of flexible rotors by utilizing the transfer matrix
method and showed that the applied torque generates
positive real parts of eigenvalues of the system. In recent
years, Chen and Ku (1992) used the finite element method to
study the dynamic stability of a cantilever shaft-disk system
subjected to axial periodic forces; Czolczynski and
Marynowski (1992) studied the stability of the Laval rotor
subjected to a longitudinal force acting on a disk.
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However, the case with the nonconservative torque
and force simultaneously applied to rotating shafts has not
been investigated and the effects of the change in direction
and magnitude of work loads on the stability and natural
frequency of flexible rotors have not yet been addressed. In
this study, we derive the qualitative stability criterion using
the energy and variational principles to gain physical insights
into the behavior of a flexible rotor system and develop a
general Galerkin's method which efficiently calculates the
eigenvalues of the system when the system is subject to
nonconservative torque and force with the applied direction
and magnitude varied.

2.ANALYSIS OF FLEXIBLE ROTORS

In this section, the governing equations and the
associated boundary conditions are derived applying the
Newton's 2nd law, when a flexible rotor is subject to
nonconservative torque and force. Then the qualitative
stability analysis technique and a general Galerkin's method
are developed.

2.1 Equations of Motion of Flexible Rotors

Equations of motion of a rotating uniform shaft with
rigid disks, as shown in Fig. 1, including the effects of
constant applied, axial or tangential, torque and force, rotary
inertia, and gyroscopic moment, can be derived as (Shieh,
1982; Lee, 1993)
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where y(x,t) and z(x,t), and f,(x,t) and f,(x,t) are the
displacements and forces, respectively, in the y and z
directions, m(x) is the mass per unit length, J.(x) the
diametral mass moment of inertia per unit length, J,(x) the
polar mass moment of inertia per unit length, EI the ﬁexural
rigidity, Q the rotational speed, x the position coordinate
along the shaft of length L, and T and P the applied torque
and compressive force at the boundary x = 0, L. And the
mass, and the polar and diametral mass moment of inertia of
disks are included in the terms associated with m(x), Jp(x),
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Fig.1 Coordinate, and positive torque and force:
T (a) cantilevered overhung rotor,
(b) rotating shaft on rigid short bearings,
(c) rotating shaft on rigid long bearings

and J(x), respectively.
The boundary conditions including the terms
associated with the torque and force can be derived, at x=0,
L, as (Shieh, 1982; Lee, 1993)
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where a—O and a=1 correspond to the axial (T ) and
tangential torque T, ) loading cases, respectively, and B=0
and p=1 correspond to the axial (P, ) and tangential force (P
) loading cases, respectively. In particular, a=0. §
corresponds to the semi-tangential torque case (T, S).

Introducing the complex notations u(x,ty = y(x,t) +j
z(x,t) and f(x,t) = f,(x,t) + j f,(x,1), and the dimensionless
variables,
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Here when k > 0 (x < 0), the force is compressive (tensile).

2.2 Stability Criterion

A qualitative stability criterion for gyroscopic
nonconservative systems, which is formulated in "equivalent
energy" term (Shieh, 1982), is derived and demonstrated
through the examples of rotating shafts subjected to the
applied torque and force.

When E(, 1) = 0, substitution of {(y, 1:)—\|/(x)e
into Egs. (4) and (5) yields the complex eigenvalue problem
inX and vy, ie.,

»n

. o 2 2
Y= JHY" + xky” + CT () WA (62)
2 12 w2 v
ACFQOWTA™ +JICGDYTA =0,
viy™ = jHy” +(1-B)xy’1=0,
viy”—jd-a)Hy']=0. (6b)
Muliiplying Eq. (6a) by ¥ (the complex conjugate of

eigenfunction, ) and integrating over 0 < ¥ < 1, and using
the boundary conditions (6b), we obtain
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The real quantities K, G, Q, and W which have the
dimension of an energy but are fictitious quantities, are
associated with the conservative kinetic energy, conservative
gyroscopic energy, conservative potential energy, and
nonconservative work due to the applied torque and force,
respectively. Also K is symmetric and positive definite; Q
is symmetric; -jG and -jW are skew-symmetric.
From Eq. (7), the stability criteria are obtained as

follows:
The state is stable against all types of instabiiity, flutter and
divergence instability, if and only if

Q>0, W=0, for G=0, (8a)

G*+4KQ >0, W =0, for G #0, (8b)
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for all eigenfunctions. The flutter instability occurs if and
only if, for at least one mode, either

W0, (9a)
or G'+4KQ<0,W =0, for G #0. (9b)

The divergence instability occurs if and only if
0<0,W=0, for G=0. (10)

From the viewpoint of design of flexible rotors, for
system stability, it is necessary that the quantity W be zero.
Then the conditions for W to be zero are: a=0.5 and B=0, or
Yy (=2y’ (0) and y (D)=y (0) =0, or y’ (1)=y’ (0)=y
(1)=y (0) =0, etc. Therefore one can conclude that a
rotating shaft with disks symmetrically arranged with respect
to its midspan supported by rigid short bearings, in which
v’ (D=ty ’ (0) and y (1)=y (0) =0 are satisfied, and a
rotating shaft with disks at arbitrary locations supported by
rigid long bearings, in which y' ()=y’ (0)=y (1)=y (0)
=0 are satisfied, remain stable regardless of the applied
direction and magnitude of torque and force.

2.3 General Galerkin's Method

In the present work , a general Galerkin's method
(Leipholz, 1987) is employed in order to find approximate
solutions. The restricted Galerkin's method assumes that
the response {(x,t) can be represented in the form of an
infinite series

o= Z¢n Xgn (D),

n=1 (1
where the base functions, ¢,(x), are normally taken as the
comparison functions, which satisfy all the boundary
conditions and q,(1) are the generalized coordinates.
However, the comparison functions are not easily found due
to the complexity involved with the boundary conditions,
The restricted Galerkin's method can be generalized such
that the requirement for the base functions is relaxed to
approximate { with a truncated expansion

N
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where the base functions, ¢ (), are taken as the admissible
functions, which satisfy only the geometric boundary
conditions.
When E(y, 1) =0, the residuals in the domain (0<y <
1) and on the boundary shear force and bending moment, at
x= 0,1, are

Ra =87 = jHEm 4 b+ 2L -CR T + ARl
(13a)
and

Ry, =87 - jHE"+ - K,
Rr,, =(" - j1-ayHE.

The weighted sum of the residuals in the domain and on the
boundary for variational formulation can then be written as

(13b)
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where the weighting functions w_,w,F , and w_™ are

chosen as ¢,(x), -0, (), and ¢,(x), respectively.
Clearly, if Eq. (14) is satisfied for a large number of

functions w,,w,", and w ™, then the expansion §(X.T)

must approach the exact solution €(x,1). Integration b
parts of Eq. (14) yields & Y

Mq'i+Cq'+Kq=f‘ (15)
where M, C and K are the complex matrices of the order
NxN and q is the N-dimensional vectors.

3.NUMERICAL ANALYSIS AND RESULTS

The stability and the modal frequency of three models
of a cantilevered overhung rotor, and rotating shafts on rigid
short bearings (simple supports) and rigid long bearings
(clamped supports), are examined when the direction and
magnitude of the applied torque and force are changed.

For the three models with one disk, shown in Fig. 1,
the rotary inertia and gyroscopic moment of the shaft can be
neglected in comparison with the disk, but the shaft mass is
considered. The equation of motion is the same as Eq. 4)
with the dimensionless parameters
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Here mg is the shaft mass per unit length, my, the disk mass,
and J;” and J,° the diametral and polar mass moment of

inertia of the disk. And 8(x) is the Dirac delta function of X
defined as

S=0if x=0; [T 8(pdy=1, an
and L is the dimensionless position of disk located at x = Xp,

=D
y—L(0<yS1). (18)

(1)_Cantilevered Overhung Rotor

As shown in Fig. 1(a), a cantilevered overhung rotor is
considered.  The associated dimensionless boundary
conditions are given by
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The residuals in the domain and on the boundary are written
as

Ra =87 = HE" 4 k8 + CRONE +CR 3G - )
€28~ Y+ ACR8G - wéT, 0
Ry =187 = jHE" + (1~ Byxd oy,
Rry =18 - (- 0)HE 1.

-109-



Typical base functions , ¢,, satisfying only the geometric
boundary conditions £(0, 1) = { (0, 1) =0, are the
eigenfunctions of the non-rotating clamped-free uniform
beam satisfying the equation

”nn 4
¢n 'ln¢n =0, (21)
in which the dimensionless natural frequencies and ¢ are
given by
El 2
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@, (x) = cosh(A,0) —cos(A, 1) - 0, {sinh(4,,%) —sin(A,, )}

Here A, and scaling factors o, are available in (Blevins,
1979).

To investigate the effect of torque and force on the
stability and natural frequency of the system, the following
numerical values have been used : shaft length L=0.254 m;
shaft diameter D=0.0381 m ; rotational speed Q2=7000 rpm ;
shaft density p=7833 Kg/m® ; Young's modulus E=2x10"!
N/m?; disk polar mass moment of inertia J,°=1.808x10"
Kg-m’ ; disk diametral mass moment of inertia J;"=9.040x 10"
? Kg-m’; disk mass my=31.77 Kg ; disk location x,=0.254
m . The related dimensionless parameters are calculated to
be C;* = 0.965, C,? = 13.52, C;?= 0.596, Cp;2=1.192, and
W = 1. The data represents one stage of a typical modern
high-speed turbomachine. In the general Galerkin's
method, twenty base functions are used.

When the torque and force are applied simultaneously,
the applied direction of torque has a significant effect on the
stability of the system, whereas the applied direction of force
has a significant effect on the natural frequency. Figure 2
shows how the logarithmic decrement is changed with the
applied direction and magnitude of torque and the applied
direction of constant compressive force (k=2). When the
force is of axial type (B=0), the values of W for at=1
(tangential torque; Fig. 2(a)) and a=0 (axial torque; Fig.
2(c)) are the same in magnitude but reversed in sign. Thus
the logarithmic decrements are reversed in sign. On the
other hand, when the force is of tangential type (f=1), the
values of W for a=1 (Fig. 2(d)) and a=0 (Fig. 2(f)) are not
the same in magnitude but reversed in sign, leading to
reversal in the unstable modes. For the special case with
a=0.5 (semi-tangential torque) and =0 (axial force), since
W=0 irrespective of the applied torque and thus the system is
conservative, all modes are in the stability limit, as can be
seen from Fig. 2(b) unless H, the torque, exceeds the critical
value determined from G*+4KQ=0. Beyond the critical
torque, it holds G*+4KQ < 0 and thus flutter instability takes
place. On the other hand, for the case with a=0.5 (semi-
tangential torque) and B=1 (tangential force), as shown in
Fig. 2(e), W0 and thus flutter instability takes place as the
torque is applied. It can be concluded here that forward
(backward) modes become unstable when the axial
(tangential) type torque with 0<a<0.5 (0.5<a<1) is applied.
In other words, the stable and unstable mode switching
occurs at «=0.5. It implies that, in practical rotors where it
is difficult to define the type of applied torque, unstable
modes may not be clearly identified.

Figure 3 shows the results with applied force only.
When B=0 (axial force) and H=0, W=0 and thus the system
is conservative, leading to pure imaginary eigenvalues.
Figure 3(a) shows that all modal frequencies tend to decrease
in magnitude with the compressive force (k) increased until
flutter instability is encountered at the critical x satisfying

Fig.2 Effect of torque on the logarithmic decrement of the

~ cantilevered overhung rotor subjected to torque and
constant compressive force (k=2):

IFj= = = «dB)=—— = == 2F, = = = ==2B
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Fig.3 Effect of force on the stability and the dimensionless
natural frequency of the cantilevered overhung rotor
subjected to force only (H=0):
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G*+4KQ = 0. When B=1 (tangential force), as shown in
Fig. 3(b), the first (second) forward and t?acsz.ird modal
frequencies tend to increase (decrease) with x increased,
leading to flutter instability beyond critical value of k.

(2) A Rotating Shaft on Rigid Short
Bearings (Simple Supports)

Consider a flexible rotating shaft with a disk on rigid
short bearings (simple supports), as shown in Fig. 1(b).
The related dimensionless boundary conditions, which hold
for both the axial and tangential force cases, become

’¢ . x
=0, ~jd-a)H=s2]=0, at =0,1
¢ [Zf ja-a) 92(] X -
To apply the general Galerkin's method, the eigenfunctions
of the non-rotating uniform Euler-Bernoulli beam with
simply-supported boundary conditions are selected as the
required set of admissible functions, that is,

O, =2sin(A,%) ; A, =nn. @4)

The residuals in the domain and on the boundary are written
as

Ry =87 = jHE™ + kl+ CHE + ChoG - w)t
CFG~ T+ ICEE( - Y, @)
Rry, =18" - j1- 0)HETy=0 1.

To investigate the effect of torque and force on the
eigenvalues of the system, the following numerical values
simply assumed have been used: shaft length L=2.0 m :
shaft diameter D=0.2 m ; rotational speed Q=35952.6 pm ;
shaft density p=7833 Kg/m® ; Young's modulus E=2x10"!

N/m?; disk polar mass moment of inertia J ,°=25.34 Kg-m’;
disk diametral mass moment of inertia J,°=12.67 Kg-m? ;
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(b) x =1
Fig 4 Effect of disk location on the logarithmic decrement of
the rotating shaft on rigid short bearings (H=2, K=2):
IF; = = = wiB; == = = OF; e = = —2B

disk mass m;=2583.85 Kg . In the numerical simulations,
twenty base functions are used with the related
dimensionless parameters , C;* = 3553, C;)’ = 18653, C,2
=22.87,and C;> =45.74 .

For the case of the simply supported rotating shaft with
a disk at its midspan (u=0.5), W becomes zero because
either y' (1) = ¢’ (0) or Y’ (1) = -y'(0) holds due to the
geometric symmetry with respect to the midpoint. Thus the
applied torque and force do not induce instability. Figure 4
shows the results with constant torque (H=2) and constant
compressive force (k=2). The logarithmic decrements vary
as the applied direction of torque and disk location (n) are
changed. In particular, flutter instability takes place unless
n=0.5 where switching between the stable and unstable
modes occurs. The switching also occurs with the type of
axial force.

(3) A Rotating Shaft on Rigid Long
Bearings (Clamped Supports)

Consider a flexible rotating shaft with a disk supported
by rigid long bearings (clamped supports), as shown in Fig.
I(c). The related dimensionless boundary conditions,
which hold for any types of torque and force, are given by

¢
§=0,5>=0, ar =0,L

o * 26)
In this case, we use base functions as the eigenfunctions of

the non-rotating clamped-clamped uniform beam given by

¢n(X) =cosh(Apx)— cos(Ap ) ~ G sinh(A ) - sin(A, 1)},
@n

in which A, and scaling factors o, are available in (Blevins,

1979).  Since the selected base functions satisfy all the

boundary conditions, the residual is defined only in the
domain as
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Fig.5 Effect of torque on the logarithmic decrement and the
T dimensionless natural frequency of the rotating shaft
on rigid long bearings (x=2, u=0.5):
(a) logarithmic decrement,
(b) dimensionless natural frequency;
1F;= = = =B; =—— = = 2F; e==m= = = =2B

Ry =57 = "+ xlr+ Rl + ChoG -

CF8G-mEy + ICRCr-miy. 28
To investigate the effect of torque and force on the

stability and the natural frequencies of this system, we use
the numerical values identical to the case of the rotating shaft
on rigid short bearings with C > = 3553, C ! = 18653, C;2
=22.87, C,* = 45.74, and twenty base functions. For the
case of the clamped supported rotating shaft subjected to
torque and force, the system is conservative, leading to W =
0, regardless of the disk location. Therefore the eigenvalues
become pure imaginary unless G*+4KQ < 0.  Figure 5
shows the results with constant compressive force (x=2) and
disk location (u=0.5). All modal frequencies tend to
decrease in magnitude with the torque (H) increased until

flutter instability is encountered at the critical H satisfying
G*+4KQ = 0.

4.CONCLUSIONS

The stability and the natural frequency of flexible
rotors under nonconservative loads such as axial or
tangential torque and force acting upon rotating shafts, were
investigated qualitatively and quantitatively with respect to
the applied direction and magnitude of loads. A qualitative
stability analysis for the flexible rotors subjected to
nonconservative loads was performed by introducing the
concepts of energy and variational principle, and the stability
criterion was derived and demonstrated through the
illustrative examples. As an efficient approximate method,
the general Galerkin's method which utilizes admissible
functions was developed and its validity was tested by
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comparing with the previous results by the transfer matrix
method.

The applied direction of torque has a significant effect
on the stability of the system, whereas the applied direction
of force affects the natural frequency. Tangential torque
may induce flutter instability contrary to axial torque and the
stable and unstable mode switching occurs at a=0.5. For
the system to be stable it is necessary that the
nonconservative part of work by external loads be zero. In
practical rotors where it is difficult to define the type of
applied torque and force, unstable modes may not be clearly
identified.
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