• Title/Summary/Keyword: adjustable parameters

Search Result 123, Processing Time 0.027 seconds

Analysis of the Room Acoustic Characteristics depending on the Sound Sources for a Multi-purpose Gymnasium finished with Absorbers on Walls and Ceiling (벽 및 천장이 흡음재로 마감된 다목적 체육관에서 음원종류에 따른 실내음향특성의 분석)

  • Park, Hyeon-Ku;Jeon, Ji-Hyun;Song, Hyuk;Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 2002
  • This study aims to investigate and evaluate the room acoustic designs of a multi purpose gymnasiums which do not use adjustable treatments in order to change the acoustical characteristics. Considering the main uses of gymnasium and auditorium, experiments were carried out using both nondirectional speakers on the stage and loudspeaker installed on the ceiling. The result from the study are as follows; Measured RT under unoccupied condition was a little longer than the expected value, therefore, in the case of occupied condition RT would be close to the optimum value. However, parameters that evaluate intelligibility and speech transmission property appeared to be low and have large differences depending on the measuring points, therefore, more effective sound reflecting surfaces and sound reinforcement systems should be considered.

The Design and Implementation of a 5 kW Programmable Three-Phase Harmonic Generator

  • Jeon, Jeong-Chay;Jeon, Hyun-Jae;Choi, Myoung-Il;Park, Chee-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.162-166
    • /
    • 2008
  • This paper presents the design and implementation of a 5kW programmable three-phase harmonic generator, which is capable of generating sinusoidal output voltages with adjustable output amplitude and frequency over a wide range as well as arbitrary waveforms. The considered harmonic generator is a linear power amplifier type. This system consists mainly of a power converter to generate and amplify waveform signals, a controller to control the desired output signal and measure the output parameters including voltage and current, and a control program to set the desired output and display the output values. The prototype programmable three-phase harmonic generator has been constructed and tested. Test results show that the developed programmable three-phase harmonic generator performs well.

A Novel Design of Compact Low-Pass Filter and Its Equivalent Circuit Model

  • Li, Rui;Kim, Dong-Il;Choi, Chang-Mook;Song, Young-Man
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.79-84
    • /
    • 2006
  • A novel design of compact low-pass filter based on microstrip structure and its equivalent-circuit model are developed. The philosophy of the structure behind this novel microstrip low-pass filter is simple as it is composed of a pair of symmetrical parallel coupled-line and an open-stub. With this configuration, a finite attenuation pole near the stopband cutoff frequency is available and adjustable by simply tuning the circuit parameters. Furthermore, the rejection bandwidth of this type of low-pass filter can be extended. In order to validate the feasibility of the proposed design method, a low-pass filter based on a microstrip structure is designed, fabricated, and measured. Experimental results agree very well with the simulation and analytical results.

  • PDF

The study of the characteristics of micro-gap discharge (미소 전극 간격을 갖는 방전장치에서의 방전특성 연구)

  • Seo, Jeong-Hyun;Shin, Buhm-Jae;Jeong, Heui-Seob;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.267-269
    • /
    • 1994
  • Various types of plasma display panels(PDPs) have been developed to realize the flat panel display device. But, many of its characteristics must be improved before it can be commercialized. In order to investigate tile characteristics of micro discharge in a PDP ceil, we have constructed a micro-gap discharge system whose electrode gap can be adjustable between $100-1000{\mu}m$ within $0.1{\mu}m$ accuracy. We measured the minimum sustain voltage, current, delay time of discharge while changing parameters(electrode gap distance, electrode surface area, pressure) which influence discharge characteristics.

  • PDF

A Stability Analysis and Controller Design of Discrete-time Fuzzy Systems with Time Delay (이산 시간지연 퍼지시스템의 안정석 해석 및 제어기 설계)

  • Lee, Gap-Rae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.279-282
    • /
    • 2006
  • 본 논문은 시간지연을 갖는 이산 비선형 시스템에 대한 점근적 안정화 및 $H_{\infty}$ 성능을 갖는 퍼지 제어기 설계 방법을 제안한다. 시간지연을 갖는 이산 Takagi-Sugeno 퍼지 모델에 대한 점근적 안정화 및 $H_{\infty}$ 성능을 만족하는 제어기 존재조건을 선형행렬부등식으로 나타낸다. 리아프노프 함수에 조정파라미터를 도입함으로써 제어기 존재조건을 조정파라미터를 포함하는 선형행렬 부등식으로 나타낸다. 선형행렬부등식에 있는 조정 파라미터를 조정함으로써 시스템의 응답속도 및 오버슈트 등의 동적 성능을 개선시킬 수 있다.

  • PDF

A Proposal of a Correlation of the Enthalpy of Vaporization for Pure Substances and Performance Comparison of Correlations (순수물질에 대한 증발엔탈피 상관식의 제안 및 성능비교)

  • Lee, Kyoung-Youl;Park, Kyoung-Kuhn
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1185-1191
    • /
    • 2005
  • Published correlation equations of the enthalpy of vaporization are reviewed and a new four-parameter correlation equation is proposed. Performance of the proposed equation is examined using the ASHRAE data for 22 pure substance refrigerants as reference data. The new equation yields an average absolute deviation of $0.05\%$, which is smaller than those of published equations, such as equations of Guermouche-Vergnaund $(0.08\%)$, Aerebrot $(0.13\%)$, Radoz-Lydersen $(0.08\%)$, and Somayajulu $(0.08\%)$. The three adjustable parameters of the modified correlation are optimized and reported for 22 substances. The equation proposed in this work is valid over the entire temperature range where data points exist.

Uniform Side Illumination Generated from LEDs Arranged by an Annealing Algorithm

  • Wang, Xu;Lei, Panling;Qian, Chaoyi;Wang, Zhiping;Xu, Xuefen;Su, Zhouping
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.332-336
    • /
    • 2022
  • Given a cubic space, it is easy to uniformly illuminate the floor with light sources placed on top. However, little has been reported about uniform illumination on walls with the same configuration of light sources. Here we present a luminaire consisting of nine light-emitting diodes (LEDs) with perfect Lambertian distribution, placed on the top as a 3 × 3 rectangular LED array. The distances between LEDs and tilt angles of each individual LED are adjustable and optimized by an annealing algorithm. After optimization, the array produces a rectangular illumination pattern on one wall with a uniformity of about 89%. Analysis shows that the tilt angles of individual LEDs are key parameters for uniform side illumination. In a scenario that is more practical, the tilt angles of all the LEDs are set to be the same, only decreasing the uniformity to 83%.

A new cavitation model considering inter-bubble action

  • Shi, Yazhen;Luo, Kai;Chen, Xiaopeng;Li, Daijin;Jia, Laibing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.566-574
    • /
    • 2021
  • The process of cavitation involves generation, growth, coalescence, and collapse of small bubbles and is tremendously influenced by bubble-bubble interactions. To understand these interactions, a new cavitation model based on the transport equation is proposed herein. The modified Rayleigh-Plesset equation is analyzed to determine the bubble growth rate by assuming equal-sized spherical bubble clouds. The source term in the transport equation is then derived according to the bubble growth rate with the bubble-bubble interaction. The proposed model is validated by various test simulations, including microscopic bubble cloud evolution as well as macroscopical two- and three-dimensional cavitating flows. Compared with previous models, namely the Kunz and Zwart cavitation models, the newly proposed model does not require adjustable parameters and generally results in better predictions both microscopic and macroscopical cases. This model is more physical.

An Automatic Diagnosis System for Hepatitis Diseases Based on Genetic Wavelet Kernel Extreme Learning Machine

  • Avci, Derya
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.993-1002
    • /
    • 2016
  • Hepatitis is a major public health problem all around the world. This paper proposes an automatic disease diagnosis system for hepatitis based on Genetic Algorithm (GA) Wavelet Kernel (WK) Extreme Learning Machines (ELM). The classifier used in this paper is single layer neural network (SLNN) and it is trained by ELM learning method. The hepatitis disease datasets are obtained from UCI machine learning database. In Wavelet Kernel Extreme Learning Machine (WK-ELM) structure, there are three adjustable parameters of wavelet kernel. These parameters and the numbers of hidden neurons play a major role in the performance of ELM. Therefore, values of these parameters and numbers of hidden neurons should be tuned carefully based on the solved problem. In this study, the optimum values of these parameters and the numbers of hidden neurons of ELM were obtained by using Genetic Algorithm (GA). The performance of proposed GA-WK-ELM method is evaluated using statical methods such as classification accuracy, sensitivity and specivity analysis and ROC curves. The results of the proposed GA-WK-ELM method are compared with the results of the previous hepatitis disease studies using same database as well as different database. When previous studies are investigated, it is clearly seen that the high classification accuracies have been obtained in case of reducing the feature vector to low dimension. However, proposed GA-WK-ELM method gives satisfactory results without reducing the feature vector. The calculated highest classification accuracy of proposed GA-WK-ELM method is found as 96.642 %.

Influence of intake runner cross section design on the engine performance parameters of a four stroke, naturally aspirated carbureted SI engine

  • Singh, Somendra Pratap;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • The current scenario of the transportation sector reflects the urgent need to address issues such as depletion of traditional fuel reserves and ever growing pollution levels. Researchers around the world are focussing on alternatives as well as optimisation of currently employed devices to reduce the pollution levels generated by the commonly used fuels. One such optimisation involves the study of air flow within the intake manifolds of SI engines. It is a well-known fact that alterations in the air manifolds of engines have a significant impact on the engine performance parameters, fuel consumption and emission levels. Previous works have demonstrated the impacts of runner lengths, diameter, plenum volume, taper angle of distribution manifolds and other factors on in-cylinder fluid motion and engine performance. However, a static setup provides an optimal configuration only at a specific engine speed. This paper aims to investigate the variations in the same parameters on a four stroke, naturally aspirated single cylinder SI engine through varying the cross section design over the intake runner with the aid of Computational Fluid Dynamics. The system consists of segments that form the intake runner with projections on the inside that allow various permutations of the intake runner segments. The various configurations provide the optimised fluid flow characteristics within the intake manifold at specific engine speed intervals. The variations such as turbulence, air fuel mixing are analysed using the three dimensional CFD software FLUENT. The results can be used further for developing an automated or manually adjustable intake manifold.