• Title/Summary/Keyword: adjacent buildings

Search Result 281, Processing Time 0.029 seconds

Seismic poundings of multi-story buildings isolated by TFPB against moat walls

  • Shakouri, Ayoub;Amiri, Gholamreza Ghodrati;Miri, Zahra Sadat;Lak, Hamed Rajaei
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.295-307
    • /
    • 2021
  • The gap provided between adjacent structures in the metropolitan cities is mostly narrow due to architectural and financial issues. Consequently, structural pounding occurs between adjacent structures during earthquakes. It causes damages, ranging from minor local to more severe ones, especially in the case of seismically isolated buildings, due to their higher displacements. However, due to the increased flexibility of isolated buildings, the problem could become more detrimental to such structures. The effect of the seismic pounding of moat walls on the response of buildings isolated by Triple Friction Pendulum Bearing (TFPB) is investigated in this paper. To this propose, two symmetric three-dimensional models, including single-story and five-story buildings, are modeled in Opensees. Nonlinear Time History Analyses (NTHA) are performed for seismic evaluation. Also, five different sizes with four different sets of friction coefficients are considered for base isolators to cover a whole range of base isolation systems with various geometry configurations and fundamental period. The results are investigated in terms of base shear, buildings' drift, and roof acceleration. Results indicated a profound effect of poundings against moat walls. In situations of potential pounding, in some cases, the influence of impact on seismic responses of multistory buildings was more remarkable.

Influence of roadside buildings on the noise in the backside blocks in city area (도시내 가로변 빌딩이 도로 이면지역의 소음에 미치는 영향)

  • Kim, Yong-Seong;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.352-362
    • /
    • 2019
  • The old residences and shops in the backside blocks are affected by the traffic noises from the main road. The noise of the backside roads is affected by the following factors such as the height of the roadside buildings, the distance between the road and the backside streets, distance among adjacent roadside buildings, and the difference of the adjacent building heights. The both noise levels on the road and the backside street were measured simultaneously in 15 urban blocks of a city which can be categorized into two types of roadside building plans ; 1) one single building along the street, 2) buildings arranged on one axis beside the road. As the results, there is no significant noise reduction due to the width of the buildings in general. However, in the cases of buildings arranged on one axis beside the road, it was found that the average noise reduction was 12 dB(A) on the basis of the building height of 4 m. Also, it was analysed that for each 4 m increase in the building height, noise reduction occurred by 2 dB(A) beyond building height of 4 m. In general, it was proved that the noise of the back streets is mainly affected by the lowest height of the roadside buildings. It was found that noise is increased by 1 dB(A) for each 4 m increase of the height difference between adjacent buildings. Also, It was revealed that for each 0.5 m increase in the distance between roadside building, noise reduction decreased by 1 dB(A).

Three-dimensional numerical simulation of turbulent flow around two high-rise buildings in proximity

  • Liu, Min-Shan
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.271-284
    • /
    • 1998
  • This paper uses the numerical simulation to investigate the interference effect of 3-D turbulent flow around two high rise buildings in proximity at the different relative heights, gaps, and wind velocities. The computer program used to carry out the simulation is based on the control volume method and the SIMPLEST algorithm. The ${\kappa}-{\varepsilon}$ model was used to simulate turbulence effects. Since the contracted flow between two adjacent buildings enhances the strength of vortex shedding from the object building, the pressure coefficient on each side wall of the object building is generally increased by the presence of apposed building. The effect is increased as the relative height or the gap between the two buildings decreases. The velocity on the vertical center line between two buildings is about 1.4 to 1.5 times the upstream wind velocity.

Development of construction method for underground buildings with MSRC diaphram wall and study on flexural performance of MSRC diaphram wall (강재주열벽을 적용한 지하건축물 가설공법의 개발 및 강재주열벽의 휨성능 연구)

  • Chung, Jee-Seung;Na, Gwi-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.937-957
    • /
    • 2017
  • Urban roads are not only congested with vehicles and pedestrians, but also have many pipelines buried to provide convenience for inhabitants. In addition, urban inhabitants live comfortably in buildings adjacent to the road for residence, business, commerce, rest and so on. Therefore, despite the high cost of land, urban underground buildings with high land use efficiency are constantly being built. Recently, the construction of underground buildings has caused social problems such as the collapse of surrounding roads and adjacent buildings. Institutional improvement is being actively carried out to improve this. In this study, a new type of MSRC diaphragm wall was developed and a study on the construction method of underground building was carried out. It is intended to secure the underground excavation safety of underground buildings in urban areas and effectively prevent land subsidence complaints. Also, a reasonable design method of MSRC diaphragm walls using the ultimate strength design method is presented through the flexural performance Experiment.

The Use of Landscape Greenery Surrounding Commercial Buildings in Seoul (서울시 일부 상업용 건물 수목의 입지환경)

  • Lee, Eun-Heui;Jang, Ha-Kyung;Ahn, Geun-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.5
    • /
    • pp.73-81
    • /
    • 2008
  • The purpose of this study is to create a database of the use of landscape greenery that surrounds commercial buildings in Seoul. The method of this study was: to review preceding studies and related laws, survey areas, measure trees, and analyze the results. The 20 representative sites were specifically investigated to measure the width, direction, and environment of planting conditions. To analyze the greens adjacent to the building, the greens were divided into three types: front greenery, side greenery, and rear greenery. The study surveyed the distance from trees to adjacent buildings, and their planting conditions. The results of this study are as follows. First, 45% of the front greenery and 30% of the rear greenery were not established, but 19 of the 20 side greens were. Second, 13 of the 44 green areas adjacent to commercial buildings were under 1m in width. Most side greenery was belt -shape and unrelated to the features of the site or building. Third, the average distance from trees to buildings was 0.76m, indicating that most trees were planted too close to the buildings. Fourth, of the 30 trees utilized, the species breakdown was: 8 evergreen trees, 15 deciduous trees, and 7 shrubs. For the most part, planting patterns were similar for all species. Fifth, most sites were ill-suited to tree growth, because crown shape, planting conditions, and light conditions, etc., had not been considered. Based on these results, it is suggested that more specific, subdivided standards for planting conditions should be established. For example, building plans should include a green area that is at least one meter in width. In addition, according to the location and type(closing/opening) of the greenery adjacent to the buildings, suitable management programs and supervision protocol should be adopted.

Probabilistic evaluation of separation distance between two adjacent structures

  • Naeej, Mojtaba;Amiri, Javad Vaseghi;Jalali, Sayyed Ghasem
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.427-437
    • /
    • 2018
  • Structural pounding is commonly observed phenomenon during major ground motion, which can cause both structural and architectural damages. To reduce the amount of damage from pounding, the best and effective way is to increase the separation distance. Generally, existing design procedures for determining the separation distance between adjacent buildings subjected to structural pounding are based on approximations of the buildings' peak relative displacement. These procedures are based on unknown safety levels. The aim of this research is to estimate probabilistic separation distance between adjacent structures by considering the variability in the system and uncertainties in the earthquakes characteristics through comprehensive numerical simulations. A large number of models were generated using a robust Monte-Carlo simulation. In total, 6.54 million time-history analyses were performed over the adopted models using an ensemble of 25 ground motions as seismic input within OpenSees software. The results show that a gap size of 50%, 70% and 100% of the considered design code for the structural periods in the range of 0.1-0.5 s, leads to have the probability of pounding about 41.5%, 18% and 5.8%, respectively. Finally, based on the results, two equations are developed for probabilistic determination of needed structural separation distance.

Building Response to Excavation-Induced Ground Movements and Damage Estimation (굴착유발 지반변위에 의한 인접구조물의 거동 및 손상도 예측)

  • Son, Moo-Rak;Cording, E.J.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.249-256
    • /
    • 2006
  • New infrastructures and buildings are being constructed increasingly in congested urban areas, and excavation-induced ground movements often cause distortion and damage to adjacent buildings. Protection of adjacent structures occupies a major part of the cost, schedule and third-party impacts of urban development. To limit damage or mitigate their effects on nearby structures, it is highly important to understand the whole mechanism from excavation to building damage, and to estimate building damage reliably before excavation and provide appropriate measures. This paper investigates the effects of excavation-induced ground movements on nearby structures, considering soil-structure interactions for ground and structures, and a building damage criterion, which is based on the state of strain, is proposed. The criterion is compared with other existing damage estimation criteria and a procedure is finally provided for estimating building damage due to excavation-induced ground movements.

  • PDF

Seismic Response Enhancement through Stiffness Connection of Two Adjacent Buildings equipped with ATMD (ATMD가 설치된 두 인접빌딩간 강성연결방식을 통한 내진성능 개선)

  • Park, Kwan-Soon;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.47-53
    • /
    • 2017
  • In this study, we propose a new control system that effectively utilizes the interaction effect of control force through the connection of stiffness member for seismic performance enhancement of two adjacent structures equipped with active tuned mass damper (ATMD). The efficiency of the proposed control system is verified by comparing with the existing independent control system through the numerical simulations of the 10th- and 12th-story buildings. From the numerical results, it is confirmed that the proposed method can show similar or better control performance even with more economical control capacity than the existing independent control system. Another advantage is that the existing system does not exhibit the adaptive control performance in emergency of failure of one control device, whereas the proposed system can achieve successful adaptive control performance by economically and efficiently utilizing the interacting control effect through the connection member.

Mitigation of seismic collision between adjacent structures using roof water tanks

  • Mahmoud, Sayed
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.171-184
    • /
    • 2020
  • The potential of using the roof water tanks as a mitigation measure to minimize the required separation gap and induced pounding forces due to collisions is investigated. The investigation is carried out using nonlinear dynamic analysis for two adjacent 3-story buildings with different dynamic characteristics under two real earthquake motions. For such analysis, nonlinear viscoelastic model is used to simulate forces due to impact. The sloshing force due to water movement is modelled in terms of width of the water tank and the instantaneous wave heights at the end wall. The effect of roof water tanks on the story's responses, separation gap, and magnitude and number of induced pounding forces are investigated. The influence of structural stiffness and storey mass are investigated as well. It is found that pounding causes instantaneous acceleration pulses in the colliding buildings, but the existence of roof water tanks eliminates such acceleration pulses. At the same time the water tanks effectively reduce the number of collisions as well as the magnitude of the induced impact forces. Moreover, buildings without constructed water tanks require wider separation gap to prevent pounding as compared to those with water tanks attached to top floor under seismic excitations.

Assessment of Utilization of Auxiliary Heating Device for Prevention of Condensation in Built-in Furniture in Winter (겨울철 공동주택에서 붙박이장 내 보조난방장치를 활용한 결로 저감 효과 평가)

  • Lee, Hyun-Hwa;Lim, Jae-Han;Song, Seung-Yeong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.99-106
    • /
    • 2017
  • Recently, the condensation and mold problems of apartment buildings has been growing due to high insulation and high air-tightness performance for energy saving. Most of all, occupants in residential buildings has suffered from property damages due to the condensation and mold of built-in furniture. Condensation at built-in furniture were generally found in winter at the of furniture's back panels, adjacent surfaces of wall, floor and ceiling. The aim of paper is to analyze the characteristics of adjacent area around built-in furniture's condensation problem and the thermal environment around the built-in furniture in winter through the field measurements at apartment buildings. In this research, the thermal conditions and surface temperature around the built-in furniture were measured during winter season. In this research, we analyzed thermal conditions for built-in furniture which were applied and not applied auxiliary heating device. In results, it is important to consider increasing surface temperature for using heater and decreasing absolute humidity due to the occupants' behavior around built-in furniture for preventing condensation.