• Title/Summary/Keyword: adiposity

Search Result 117, Processing Time 0.034 seconds

Effects of the Fat Contents & Distribution on the Disease Status of Young Adults Male (젊은 성인 남자의 체지방량 및 분포가 성인병 발생 위험 요인에 미치는 영향)

  • 조은희
    • Journal of Nutrition and Health
    • /
    • v.28 no.5
    • /
    • pp.451-459
    • /
    • 1995
  • This study was intended to figure out the effects of the amount and the distribution of body fat on the risk fators of adult disease. Sixty-four male college students paticipatied in this study, whose to find out body fat distributions were classified on the basis of Waist/hip ratio(WHR) into three groups-upper body type(UBTM), intermediate body type (IBTM) and lower body type(LBTM). Various risk factors such as adiposity, body fat ammount, serum lipid amount and blood pressure and their intercorrelations were analyzed. The three bodys type groups showed significant differences each other in weight(P<0.001), WHR showed considerable correlations with BMI and the percentage of body fat. The frequency of obesity assessed by BMI$\geq$25 and body fat percentage were the highest in the UBTM of the three groups. Thus, we could conclude that the closer the body fat distribution is to the upper body type, the higher the BMI and body fat percentage. Waist/girth ratio(WTR, P<0.01) and BMI(P<0.05) were positively correlated with serum triglyceride levels, and % of body fat was positively correlated with both serum triglyceride (P<0.01) and serum total cholesterol(P<0.05) levels. WHR (P<0.05), BMI(P<0.01) and % of body fat(P<0.01) also showed positive correlations with systolic blood pressure. From the above results, we could conclude that body fat distribution was a good index reflecting adiposity and body fat amount and that blood and serum amount of triglyceride was highest in the upper body type group showing the highest frequency of obesity.

  • PDF

Catch-up growth and catch-up fat in children born small for gestational age

  • Cho, Won Kyoung;Suh, Byung-Kyu
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Infants born small for gestational age (SGA) are at increased risk of perinatal morbidity, persistent short stature, and metabolic alterations in later life. Recent studies have focused on the association between birth weight (BW) and later body composition. Some reports suggest that fetal nutrition, as reflected by BW, may have an inverse programing effect on abdominal adiposity later in life. This inverse association between BW and abdominal adiposity in adults may contribute to insulin resistance. Rapid weight gain during infancy in SGA children seemed to be associated with increased fat mass rather than lean mass. Early catch-up growth after SGA birth rather than SGA itself has been noted as a cardiovascular risk factor in later life. Children who are born SGA also have a predisposition to accumulation of fat mass, particularly intra-abdominal fat. It is not yet clear whether this predisposition is due to low BW itself, rapid postnatal catch-up growth, or a combination of both. In this report, we review the published literature on central fat accumulation and metabolic consequences of being SGA, as well as the currently popular research area of SGA, including growth aspects.

$17{\beta}$-estradiol Represses White Adipose Tissue Metabolism by Inhibiting $PPAR{\gamma}$ in High Fat Diet-induced Obese Female Ovariectomized Mice

  • Yoon, Mi-Chung;Jeong, Sun-Hyo
    • Biomedical Science Letters
    • /
    • v.15 no.3
    • /
    • pp.171-177
    • /
    • 2009
  • This study investigated whether increased adiposity is prevented by estrogen replacement in female ovariectomized (OVX) C57BL/6J mice, an animal model of human menopause and whether these metabolic changes reflect the inhibitory action of estrogen on peroxisome proliferator-activated receptor $\gamma$ ($PPAR{\gamma}$)-regulated gene expression. Treatment of $17{\beta}$-estradiol for the last one week of the experiment decreased high fat diet-induced body weight gain and white adipose tissue mass compared to OVX control mice. Histological analysis showed that administration of $17{\beta}$-estradiol to mice decreased the size of adipocytes in parametrial adipose tissue versus OVX control mice. In addition, $17{\beta}$-estradiol reduced the adipose expression of $PPAR{\gamma}$ as well as $PPAR{\gamma}$ target genes such as adipocyte fatty acid binding protein and tumor necrosis factor $\alpha$. These results suggest that $17{\beta}$-estradiol may inhibit adiposity through reducing the $PPAR{\gamma}$ activities in female OVX mice.

  • PDF

Replication of Interactions between Genome-Wide Genetic Variants and Body Mass Index in Fasting Glucose and Insulin Levels

  • Hong, Kyung-Won;Chung, Myungguen;Cho, Seong Beom
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.236-239
    • /
    • 2014
  • The genetic regulation of glucose and insulin levels might be modified by adiposity. With regard to the genetic factors that are altered by adiposity, a large meta-analysis on the interactions between genetic variants and body mass index with regard to fasting glucose and insulin levels was reported by the Meta-Analyses of Glucose- and Insulin-related trait Consortium (MAGIC), based on European ancestry. Because no replication study has been performed in other ethnic groups, we first examined the link between reported single-nucleotide polymorphisms (SNPs) and fasting glucose and insulin levels in a large Korean cohort (Korean Genome and Epidemiology Study cohort [KoGES], n = 5,814). The MAGIC study reported 7 novel SNPs for fasting glucose levels and 6 novel SNPs for fasting insulin levels. In this study, we attempted to replicate the association of 5 SNPs with fasting glucose levels and 5 SNPs with fasting insulin levels. One SNP (rs2293941) in PDX1 was identified as a significant obesity-modifiable factor in Koreans. Our results indicate that the novel loci that were identified by MAGIC are poorly replicated in other ethnic groups, although we do not know why.

Mentha canadensis attenuates adiposity and hepatic steatosis in high-fat diet-induced obese mice

  • Youngji Han;Ji-Young Choi;Eun-Young Kwon
    • Nutrition Research and Practice
    • /
    • v.17 no.5
    • /
    • pp.870-882
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Obesity is a major risk factor for metabolic syndrome, a global public health problem. Mentha canadensis (MA), a traditional phytomedicine and dietary herb used for centuries, was the focus of this study to investigate its effects on obesity. MATERIALS/METHODS: Thirty-five male C57BL/6J mice were randomly divided into 2 groups and fed either a normal diet (ND, n = 10) or a high-fat diet (HFD, n = 25) for 4 weeks to induce obesity. After the obesity induction period, the HFD-fed mice were randomly separated into 2 groups: one group continued to be fed HFD (n = 15, HFD group), while the other group was fed HFD with 1.5% (w/w) MA ethanol extract (n = 10, MA group) for 13 weeks. RESULTS: The results showed that body and white adipose tissue (WAT) weights were significantly decreased in the MA-supplemented group compared to the HFD group. Additionally, MA supplementation enhanced energy expenditure, leading to improvements in plasma lipids, cytokines, hepatic steatosis, and fecal lipids. Furthermore, MA supplementation regulated lipid-metabolism-related enzyme activity and gene expression, thereby suppressing lipid accumulation in the WAT and liver. CONCLUSIONS: These findings indicate that MA has the potential to improve diet-induced obesity and its associated complications, including adiposity, dyslipidemia, hepatic steatosis, and inflammation.

The Improvement Effects of β-Glucan on Adiposity and Serum Lipids Levels in High Fat Diet-Induced Obese Rats (베타-글루칸의 고지방 식이 유도 비만쥐에서 체지방 및 혈청지질 개선효과)

  • Hong, Kyung Hee;Kim, Hyun-Soon;Jang, Ki-Hyo;Kang, Soon Ah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3973-3981
    • /
    • 2015
  • This study was aimed to investigate the effect of dietary ${\beta}$-glucan obtained from bacterial fermentation on the adiposity and serum lipids level in rats. Sprague-Dawley rats fed high fat diet for 6 weeks to induce obesity, and subsequently fed with 0% (high fat control group), 0.1% or 0.5% ${\beta}$-glucan supplemented high-fat diets (w/w) for another 5 weeks. For comparison, normal control groups fed AIN-76A diet. Supplemented with 0.1% ${\beta}$-glucan resulted in a significant reduction of high-fat induced peritoneal fat and visceral fat development by 16%, 19%, and 28%, respectively(P<0.05). Serum free fatty acid levels were reduced(by 19%), whereas the HDL cholesterol level was increased(by 50%) by 0.1% dietary ${\beta}$-glucan(P<0.05). In conclusion, dietary ${\beta}$-glucan reduced adiposity and improved serum lipids in obese rats fed high fat diet. The present study suggest that ${\beta}$-glucan supplementation to the diet is beneficial in suppressing diet-induced obesity and dyslipidemia.

Effect of Korean pine nut oil on hepatic iron, copper, and zinc status and expression of genes and proteins related to iron absorption in diet-induced obese mice

  • Shin, Sunhye;Lim, Yeseo;Chung, Jayong;Park, Soyoung;Han, Sung Nim
    • Journal of Nutrition and Health
    • /
    • v.54 no.5
    • /
    • pp.435-447
    • /
    • 2021
  • Purpose: Body adiposity is negatively correlated with hepatic iron status, and Korean pine nut oil (PNO) has been reported to reduce adiposity. Therefore, we aimed to study the effects of PNO on adiposity, hepatic mineral status, and the expression of genes and proteins involved in iron absorption. Methods: Five-week-old male C57BL/6 mice were fed a control diet containing 10% kcal from PNO (PC) or soybean oil (SBO; SC), or a high-fat diet (HFD) containing 35% kcal from lard and 10% kcal from PNO (PHFD) or SBO (SHFD). Hepatic iron, copper, and zinc content; and expression of genes and proteins related to iron absorption were measured. Results: HFD-fed mice had a higher white fat mass (2-fold; p < 0.001), lower hepatic iron content (25% lower; p < 0.001), and lower hepatic Hamp (p = 0.028) and duodenal Dcytb mRNA levels (p = 0.037) compared to the control diet-fed mice. Hepatic iron status was negatively correlated with body weight (r = -0.607, p < 0.001) and white fat mass (r = -0.745, p < 0.001). Although the PHFD group gained less body weight (18% less; p < 0.05) and white fat mass (18% less; p < 0.05) than the SHFD group, the hepatic iron status impaired by the HFD feeding did not improve. The expression of hepatic and duodenal ferroportin protein was not affected by the fat amount or the oil type. PNO-fed mice had significantly lower Slc11a2 (p = 0.022) and Slc40a1 expression (p = 0.027) compared to SBO-fed mice. However, the PC group had a higher Heph expression than the SC group (p < 0.05). The hepatic copper and zinc content did not differ between the four diet groups, but hepatic copper content adjusted by body weight was significantly lower in the HFD-fed mice compared to the control diet-fed mice. Conclusion: HFD-induced obesity decreased hepatic iron storage by affecting the regulation of genes related to iron absorption; however, the 18% less white fat mass in the PHFD group was not enough to improve the iron status compared to the SHFD group. The hepatic copper and zinc status was not altered by the fat amount or the oil type.

Ursodeoxycholic acid decreases age-related adiposity and inflammation in mice

  • Oh, Ah-Reum;Bae, Jin-Sik;Lee, Junghoon;Shin, Eunji;Oh, Byung-Chul;Park, Sang-Chul;Cha, Ji-Young
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.105-110
    • /
    • 2016
  • Ursodeoxycholic acid (UDCA), a natural, hydrophilic nontoxic bile acid, is clinically effective for treating cholestatic and chronic liver diseases. We investigated the chronic effects of UDCA on age-related lipid homeostasis and underlying molecular mechanisms. Twenty-week-old C57BL/6 male and female mice were fed a diet with or without 0.3% UDCA supplementation for 25 weeks. UDCA significantly reduced weight gain, adiposity, hepatic triglyceride, and hepatic cholesterol without incidental hepatic injury. UDCA-mediated hepatic triglyceride reduction was associated with downregulated hepatic expression of peroxisome proliferator-activated receptor-γ, and of other genes involved in lipogenesis (Chrebp, Acaca, Fasn, Scd1, and Me1) and fatty acid uptake (Ldlr, Cd36). The inflammatory cytokines Tnfa, Ccl2, and Il6 were significantly decreased in liver and/or white adipose tissues of UDCA-fed mice. These data suggest that UDCA exerts beneficial effects on age-related metabolic disorders by lowering the hepatic lipid accumulation, while concurrently reducing hepatocyte and adipocyte susceptibility to inflammatory stimuli.

Bacterial $\beta$-Glucan Exhibits Potent Hypoglycemic Activity via Decrease of Serum Lipids and Adiposity, and Increase of UCP mRNA Expression

  • HONG KYUNGHEE;JANG KI-HYO;LEE JAE-CHEOL;KIM SOHYE;KIM MI-KYOUNG;LEE IN-YOUNG;KIM SANG-MOO;LIM YOONG HO;KANG SOON AH
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.823-830
    • /
    • 2005
  • This study was undertaken to evaluate the effect of bacteria-derived $\beta$-glucan fiber on serum lipids, adiposity and uncoupling protein (UCP) expression in rats. In order to induce obesity, Sprague-Dawley weanling male rats were allowed free access to AIN-76A diet until 4 weeks of age, and fed high-fat diet (beef tallow, $40\%$ of calories as fat) for 6 weeks until 10 weeks of age. Rats were then fed with $0\%$ thigh- fat control group), $1\%$, or $5\%$ bacterial ~-glucan supplemented high-fat diets (w/w) for another 6 weeks. For comparison, normal control group was fed with AIN-76 diet $11.7\%$ fat). Supplementation with bacterial $\beta$-glucan resulted in a significant reduction of high-fat-induced white fat (i.e., visceral and peritoneal fat) development, adipocyte hypertrophy, and development of hyperinsulinemia and hyperleptinemia. Serum triglyceride, total cholesterol, and free fatty acid levels were greatly reduced, but, HDL-cholesterol concentrations were increased by bacterial $\beta$-glucan supplementation. Serum leptin level was lower in the $\beta$-glucan groups than in the high-fat group. The expression of UCPs (UCP1, UCP2, and UCP3) in brown adipose tissue (BAT) were significantly increased by $5\%$ bacterial $\beta$-glucan-containing diet. This study suggests that the anti-obesity effect of $5\%$ bacterial $\beta$-glucan is attributed to upregulation of UCPs and inefficient energy utilization.