• Title/Summary/Keyword: adipocytes differentiation

Search Result 290, Processing Time 0.028 seconds

Isolation and characterization of feline endometrial mesenchymal stem cells

  • Mi-Kyung Park;Kun-Ho Song
    • Journal of Veterinary Science
    • /
    • v.25 no.2
    • /
    • pp.31.1-31.8
    • /
    • 2024
  • Background: Recently, there has been a growing interest in stem cells for human medicine. Limited feline endometrial mesenchymal stem cell (fEM-MSC) research in veterinary medicine necessitates reporting for future feline disease research and therapy. Objectives: This study aimed to isolate fEM-MSCs from feline endometrial tissues and evaluate their morphology, proliferative ability, differentiation ability, and immunophenotype. Methods: Feline endometrial tissues were obtained from the ovariohysterectomies of healthy cats and isolated using an enzymatic method. The morphology and proliferative ability of the isolated cells were assessed using a doubling time (DT) assay from passages 3 to 6 (P3 - P6). We measured pluripotency gene expressions of cells in P2 using quantitative real-time polymerase chain reaction (qRT-PCR). To investigate MSC characteristics, a trilineage differentiation assay was conducted in P4, and cells in P4 were immunophenotyped using flow cytometry. Results: fEM-MSCs showed a typical spindle-shaped morphology under a microscope, and the DT was maintained from P3 to P6. fEM-MSCs could differentiate into adipocytes, osteoblasts, and chondrocytes, and expressed three pluripotency markers (OCT4, SOX2, and NANOG) by qRT-PCR. Immunophenotypic analysis showed that the fEM-MSCs were CD14 -, CD34 -, CD45 -, CD9+, and CD44+. Conclusions: In this study, the feline endometrium was a novel source of MSCs, and to the best of our knowledge, this is the first report on the isolation method and characteristics of fEM-MSCs.

Bioconversion of Citrus unshiu peel extracts with cytolase suppresses adipogenic activity in 3T3-L1 cells

  • Lim, Heejin;Yeo, Eunju;Song, Eunju;Chang, Yun-Hee;Han, Bok-Kyung;Choi, Hyuk-Joon;Hwang, Jinah
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.599-605
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Citrus flavonoids have a variety of physiological properties such as anti-oxidant, anti-inflammation, anti-cancer, and anti-obesity. We investigated whether bioconversion of Citrus unshiu with cytolase (CU-C) ameliorates the anti-adipogenic effects by modulation of adipocyte differentiation and lipid metabolism in 3T3-L1 cells. MATERIALS/METHODS: Glycoside forms of Citrus unshiu (CU) were converted into aglycoside forms with cytolase treatment. Cell viability of CU and CU-C was measured at various concentrations in 3T3L-1 cells. The anti-adipogenic and lipolytic effects were examined using Oil red O staining and free glycerol assay, respectively. We performed real time-polymerase chain reaction and western immunoblotting assay to detect mRNA and protein expression of adipogenic transcription factors, respectively. RESULTS: Treatment with cytolase decreased flavanone rutinoside forms (narirutin and hesperidin) and instead, increased flavanone aglycoside forms (naringenin and hesperetin). During adipocyte differentiation, 3T3-L1 cells were treated with CU or CU-C at a dose of 0.5 mg/ml. Adipocyte differentiation was inhibited in CU-C group, but not in CU group. CU-C markedly suppressed the insulin-induced protein expression of CCAAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$) and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) as well as the mRNA levels of $CEBP{\alpha}$, $PPAR{\gamma}$, and sterol regulatory element binding protein 1c (SREBP1c). Both CU and CU-C groups significantly increased the adipolytic activity with the higher release of free glycerol than those of control group in differentiated 3T3-L1 adipocytes. CU-C is particularly superior in suppression of adipogenesis, whereas CU-C has similar effect to CU on stimulation of lipolysis. CONCLUSIONS: These results suggest that bioconversion of Citrus unshiu peel extracts with cytolase enhances aglycoside flavonoids and improves the anti-adipogenic metabolism via both inhibition of key adipogenic transcription factors and induction of adipolytic activity.

Effects of Lonicera caerulea extract on adipocyte differentiation and adipogenesis in 3T3-L1 cells and mouse adipose-derived stem cells (MADSCs) (댕댕이나무 열매 추출물이 지방전구세포와 마우스 지방유래줄기세포의 분화 및 지방 생성 억제에 미치는 영향)

  • Park, Miey;Lee, Changho;Lee, Hae-Jeung
    • Journal of Nutrition and Health
    • /
    • v.52 no.1
    • /
    • pp.17-25
    • /
    • 2019
  • Purpose: Obesity is a major health problem of global significance because it is clearly associated with an increased risk of health problems, such as nonalcoholic fatty liver disease (NAFLD), diabetes, cardiovascular diseases, and cancer. Lonicera caerulea (LC) originates from high mountains or wet areas and has been used as a traditional medicine in northern Russia, China, and Japan. LC contains a range of bioactive constituents, such as vitamins, minerals, and polyphenols. This study examined the anti-obesity effects of LC during differentiation in preadipocytes. Methods: The cell viability assay was performed after the differentiation of 3T3-L1 cells for 7 days. Oil Red O staining was used to visualize the changes in lipid droplets in 3T3-L1 cells and mouse adipose-derived stem cells (MADSCs). The mRNA expression of obesity-related genes was determined by quantitative real-time PCR. Results: According to the results of Oil Red O staining, the lipid levels and size of lipid droplets in the adipocytes were reduced and the LC extract (LCE, 0.25-1 mg/mL) markedly inhibited adipogenesis in a dose-dependent manner. The treatment of LCE also decreased the mRNA expression of peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), CCAAT/enhancer binding protein-${\alpha}$ ($C/EBP{\alpha}$), and sterol regulatory element binding protein 1 (SREBP1) in 3T3-L1 cells. Western blot analysis showed that the $PPAR{\gamma}$, $C/EBP{\alpha}$, and SREBP1 protein levels in both 3T3-L1 and MADSC were reduced in a dose-dependent manner. Conclusion: These results suggest that LCE can inhibit adipogenic differentiation through the regulation of adipogenesis-related markers.

Inhibitory Effects of Rubus crataegifolius Leaf Water Extract on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes

  • Mee-Kyung Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.187-194
    • /
    • 2024
  • In this study, we examined the effects of Rubus crataegifolius leaf on the inhibition of differentiation and adipogenesis of 3T3-L1 preadipocytes to confirm their potential for use as an anti-obesity functional material. Rubus crataegifolius leaves water extracted using hot water were then concentrated for use, with an extract yield of 4.76%. The result of measuring the rate of 3T3-L1 cell survival of Rubus crataegifolius leaf extract (RCLE) showed growth inhibition of 13% at a concentration of 1,000 ㎍/mL. Thus, in this study, experiments were performed using RCLE treatment concentrations up to 500 ㎍/mL. Production of triglycedie in 3T3-L1 cells showed a dose-dependent decrease, and the rate of reduction was 28.7, 40.8, and 51.6% at concentrations of 100, 300, and 500 ㎍/mL, respectively, compared to the control group. In addition, the results confirmed that suppression of lipogenesis was achieved by suppressing the expression of peroxisome proliferator-activated receptor γ (PPAR γ), CCAAT/enhancer-binding protein α (C/EBP α), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and increasing the expression of p-activated protein kinase (p-AMPK). Based on these results, it is believed that Rubus crataegifolius leaf extract can be used in the effort to manage obesity by regulating factors related to adipocyte differentiation and adipogenesis.

Peroxisome Proliferator-activated Receptor-γ Gene Polymorphisms are not associated with Osteonecrosis of the Femoral Head in the Korean Population

  • Kim, Tae-Ho;Hong, Jung Min;Park, Eui Kyun;Kim, Shin-Yoon
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.388-393
    • /
    • 2007
  • Osteonecrosis of the femoral head (ONFH) is a multifactorial disease to which certain individuals are more at risk. Altered lipid metabolism is one of the major risk factors for osteonecrosis, especially corticosteroid therapy and alcoholism. Peroxisome Proliferator-Activated Receptor-${\gamma}$ ($PPAR{\gamma}$) plays a crucial role in differentiation of mesenchymal cells to adipocytes, lipid homeostasis, and bone metabolism. To investigate the possible association between $PPAR{\gamma}$ gene variants and susceptibility to ONFH, we genotyped three common polymorphisms (-796A > G, +34C > G[Pro12Ala], and +82466C > T[His477His]) in 448 ONFH patients and 336 control subjects. Genotypes, allele frequencies, and haplotypes of the polymorphisms in the complete set of patients as well as in subgroups by sex or etiology were not significantly different from those in the control group. This suggests that the examined polymorphisms and haplotypes of the $PPAR{\gamma}$ gene are unlikely to be associated with susceptibility to ONFH.

Stem cell properties of cells derived from canine periodontal ligament (성견 치주인대세포의 줄기세포 특성 연구)

  • Kim, Kyoung-Hwa;Kim, Su-Hwan;Seol, Yang-Jo;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.479-488
    • /
    • 2007
  • In spite of the attention given to the study of mesenchymal stem cells derived periodontal ligament (PDL), there is a lack of information about canine PDL cells. In this study, we characterized canine PDL cells to clarify their stem cell properties, including self renewal, proliferate rate, stem cell markers and multipotency. PDL cells were obtained from extracted premolars of canines, following a colony forming assay and proliferation rate of sub-confluent cultures of cells for self-renewal, immunostaining for STRO-1 and CD146/MUC18 and a differentiation assay for multipotency. Canine PDL cells formed single-cells colonies and 25% of the PDL cells displayed positive staining for BrdU. The cells expressed the mesenchymal stem-cell markers, STRO-1 and CD146/MUC18. Under defined culture conditions, the cells differentiated into osteoblasts and adipocytes, but the cells didn't differentiated into chondrocytes. The findings of this study indicated that the canine PDL cells possess crucial stem cells properties, such as self-renewal and multipotency, and express the mesenchymal stem cell markers on their surface. The isolation and characterization of canine PDL cells makes it feasible to pursue preclinical models of periodontal regeneration in canine.

Antioxidant Activity and Anti-Adipogenic Effect of Ligularia stenocephala Extract (곤달비 추출물의 항산화 활성 및 지방세포 분화 억제 효과)

  • Seo, Dongyeon;Cheon, Wonyoung;Kim, Younghwa
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1292-1298
    • /
    • 2017
  • The purpose of this study was to evaluate the antioxidant and anti-adipogenic activities of Ligularia stenocephala (L. stenocephala) extract. The contents of the total polyphenol of the extract was 55.950 mg GAE/g residue. Antioxidant activities of L. stenocephala were evaluated by free radical scavenging ability and a reducing power test. 2,2'azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ${\alpha}$-${\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) free radical scavenging activities of the extract were approximately 90% and 70%, respectively. Reducing power of the extract was 258.833 mg TE/g residue. The anti-adipogenic activity of L. stenocephala extract was examined in 3T3-L1 cells. During adipocyte differentiation, the 3T3-L1 cells were treated both with and without the extract. L. stenocephala extract suppressed the lipid accumulation in a concentration-dependent manner in the 3T3-L1 cells. The L. stenocephala extract inhibited the expression of peroxisome proliferator activated receptor ${\gamma}$ ($PPAR{\gamma}$) and adipocyte protein 2 (aP2) proteins, compared with control adipocytes. These results indicate that L. stenocephala could be regarded as a potential source natural antioxidant and an anti-obesity agent.

Inhibitors of Adipogenesis in 3T3-L1 Cells Isolated from Wheat Bran (밀겨 유래의 3T3-L1 세포 지방생성 억제물질)

  • Jeong, Won-Sik;Hong, Seong-Su;Lee, Jung-A;Ahn, Eun-Kyung;Oh, Joa-Sub
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.4
    • /
    • pp.302-308
    • /
    • 2011
  • As a part of our ongoing program on finding biologically active components from natural source we found three known constituents from the EtOH extract of the wheat bran. The known compounds were identified as tachioside (1), pinellic acid (2) and tryptophan (3). The structure and relative stereochemistry were determined from MS, 1D and extensive 2D NMR techniques as well as by comparison of their data with the published values. All isolates were tested their inhibitory effects on the adipogenesis in 3T3-L1 cells. The effect of compounds from wheat bran on 3T3-L1 adipocyte differentiation were measured by Oil Red O staining. These results demonstrate that tachioside (1) and pinellic acid (2) decreased lipid content in 3T3-L1 adipocytes by inhibiting lipogenesis. These compounds had shown antiobesity activities.

Inhibition of Adipocyte Differentiation by MeOH Extract from Carduus crispus through ERK and p38 MAPK Pathways

  • Lee, Eun-Jeong;Joo, Eun-Ji;Hong, Yoo-Na;Kim, Yeong-Shik
    • Natural Product Sciences
    • /
    • v.17 no.4
    • /
    • pp.273-278
    • /
    • 2011
  • In this study, the effects of a methanol (MeOH) extract of Carduus crispus L. (Asteraceae) on adipogenesis was investigated in 3T3-L1 cells. To differentiate preadipocytes to adipocytes, confluent 3T3-L1 preadipocytes were treated with a hormone mixture, which included isobutylmethylxanthine, dexamethasone, and insulin (MDI). The methanol extract of C. crispus significantly decreased fat accumulation by inhibiting adipogenic signal transcriptional factors in MDI-induced 3T3-L1 cells in a dose-dependent manner. In MTT assays and on PI-staining, methanol extract of C. crispus inhibited the proliferation of 3T3-L1 cells during mitotic clonal expansion (MCE). The anti-adipogenic effect of the Carduus extract seemed to be associated with the upregulation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) pathways within the first 2 days after MDI treatment. These results suggest that methanol extract of C. crispus might be beneficial for the treatment of obesity.

Generation of Transgenic Mice with Overexpression of Mouse Resistin

  • Lee, H. T.;J. R. Chun.;K. S. Chung
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.4
    • /
    • pp.321-328
    • /
    • 2002
  • The hormone resistin is associated with type II diabetes mellitus in rodent model. Resistin impairs glucose tolerance and insulin action. A new class of anti-diabetic drugs were called thiazolidinediones (TZDs) downreguates a resistin. Resistin gene expression is induced during adipocyte differentiation and resistin polypeptide is secreted by adipocytes. But, the correlation between increased adiposity and resistin remains unknown. The objectives of this study was to clone a mouse resistin CDNA and to generate transgenic mice overexpressing mouse resistin gene. The pCMV-mus/resistin gene was prepared from previous recombinant pTargeT$^{TM}$-mus/resistin by digestion of Bgl II, and has used for microin- jection into pronuclei of one cell embryos. Mouse resistin expression was detected in transgenic F$_1$mice by RT-PCR. The transgenic mouse with resistin gene expression has heavier body weight which was measured higher level of plasma glucose than that of normal mouse. And in diet-induced experiments, in fasting group, resistin expression was higher than that of re-feeding group. This result demonstrates that the resistin gene overexpressing mice may be became to obesity and be useful as an animal disease model to be diabetes caused by insulin resistance of resistin.n.