• Title/Summary/Keyword: adiabatic test

Search Result 127, Processing Time 0.023 seconds

DESIGN AND APPLICATION OF A SINGLE-BEAM GAMMA DENSITOMETER FOR VOID FRACTION MEASUREMENT IN A SMALL DIAMETER STAINLESS STEEL PIPE IN A CRITICAL FLOW CONDITION

  • Park, Hyun-Sik;Chung, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.349-358
    • /
    • 2007
  • A single-beam gamma densitometer is utilized to measure the average void fraction in a small diameter stainless steel pipe under critical flow conditions. A typical design of a single-beam gamma densitometer is composed of a sealed gammaray source, a collimator, a scintillation detector, and a data acquisition system that includes an amplifier and a single channel analyzer. It is operated in the count mode and can be calibrated with a test pipe and various types of phantoms made of polyethylene. A good average void fraction is obtained for a small diameter pipe with various flow regimes of the core, annular, stratified, and bubbly flows. Several factors influencing the performance of the gamma densitometer are examined, including the distance between the source and the detector, the measuring time, and the ambient temperature. The void fraction is measured during an adiabatic downward two-phase critical flow in a vertical pipe. The test pipe has an inner diameter of 10.9 mm and a thickness of 3.2 mm. The average void fraction was reasonably measured for a two-phase critical flow in the presence of nitrogen gas.

Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 2 : NOx/CO emission Characteristics, Temperature Characteristics and Flame Structures (모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 2 : NOx/CO 배출특성, 온도특성, 화염구조)

  • Lee, Min Chul;Yoon, Jisu;Joo, Seong Pil;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.639-648
    • /
    • 2013
  • This paper describes on the NOx/CO emission characteristics, temperature characteristics and flame structures when firing coal derived synthetic gas especially for gases of Buggenum and Taean IGCC. These combustion characteristics were observed by conducting ambient-pressure elevated-temperature combustion tests in GE7EA model combustor when varying heat input and nitrogen dilution ratio. Nitrogen addition caused decrement in adiabatic flame temperature, thus resulting in the NOx reduction. At low heat input condition, nitrogen dilution raised the CO emission dramatically due to incomplete combustion. These NOx reduction and CO arising phenomena were observed at certain flame temperature of $1500^{\circ}C$ and $1250^{\circ}C$, respectively. As increasing nitrogen dilution, adiabatic flame temperature and combustor liner temperature were decreased and singular points were detected due to change in flame structure such as flame lifting. From the results, the effect of nitrogen dilution on the NOx/CO and flame structure was examined, and the test data will be utilized as a reference to achieve optimal operating condition of the Taean IGCC demonstration plant.

An Experimental Study on the Strength Development of High Strength Concrete in Various Curing Conditions at an Early-age (초기 양생조건에 따른 고강도 콘크리트의 강도발현에 관한 실험적 연구)

  • Kwon, Yeong-Ho;Lee, Tea-Wang
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • This study is experimentally investigated the effects of various steam curing parameters on the early-age compressive strength development of high strength concrete (over 40 MPa) in the precast plant production. High strength concrete are used only ordinary portland cement (type I) and water-cement ratio selected 3cases (25%, 35% and 45%). Also, steam curing parameters are as followings ; (1) Preset period 2cases (3 hours and 6 hours) (2) Maximum curing temperature 3cases ($45^{\circ}C$, $55^{\circ}C$ and $65^{\circ}C$) (3) Maintenance time of curing temperature 3cases (4 hours, 6 hours and 8 hours) (4) Maximum rate of heating and cooling $15^{\circ}C$/hr. Initial setting time and adiabatic temperature rising ratio of these concrete according to water-cement ratio are tested before main tests and examined the compressive strength development for the steam curing parameters. Also compressive strength are compared with optimum steam curing condition and standard curing at test ages. As test results, the optimum steam curing conditions for high strength concrete(over 40 MPa) are as followings. (1) Preset period ; over initial setting time of concrete (2) Maximum curing temperature ; bellow $55^{\circ}C$ (3) Maintenance time of curing temperature ; bellow 6hours. Also strength development of steam curing concrete show in the reversed strength at 28 days. It is to propose an efficient steam curing condition for high strength concrete in the precast method.

Fundamental Properties of Fly ash Concrete Containing Lightly Burnt MgO Powder (저온 소성한 MgO 분말을 함유한 플라이애시 콘크리트의 기본 물성)

  • Choi, Seul-Woo;Jang, Bong-Seok;Lee, Kwang-Myong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.475-481
    • /
    • 2013
  • Although the lightly burnt MgO at $850{\sim}1000^{\circ}C$ has expansibility, it does not lead to unsound concrete. The expansion of MgO could compensate for shrinkage of concrete for a long-term, because the hydration of MgO occurs at a slow pace. Recently, the study and application of mineral admixture such as fly ash and blast furnace slag have increased for the hydration heat reduction, durability improvement, and reducing $CO_2$ emission in the construction industry. Thus, it is necessary to research on the concrete that contains both a mineral admixture and MgO as an expansion agent. This study investigates fundamental properties of fly ash concrete with lightly burnt MgO through various experiments. The adiabatic temperature test results showed that the fly ash concrete with MgO of the 5% replacement ratio had the slower pace of the temperature rise and the lower final temperature than the fly ash concrete. The influences of MgO on long-term compressive strength varied depending on water-binder ratio, and the long-term length change test results indicated the expansion effects of the FA concrete containing MgO.

Hydration Heat and Strength Characteristics of Cement Mortar with Phase Change Materials(PCMs) (상전이물질을 혼입한 시멘트 모르타르의 수화발열 및 강도 특성 평가)

  • Jang, Seok-Joon;Kim, Byung-Seon;Kim, Sun-Woong;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.665-672
    • /
    • 2016
  • This study is conducted to investigate the effect of phase change materials (PCM) on hydration heat and strength characteristics of cement mortar. Two types of Barium and Strontium-based PCMs were used in this study and the addition ratio of each PCM to the cement mortar ranged from 1% to 5% by cement weight. Flow test, semi-adiabatic temperature rise test, compressive strength and flexural strength test were carried out to examine the PCM effect on heat and mechanical properties of cement mortar. Test results indicated that PCMs used in this study were effective to control hydration heat of cement mortar, and Barium-based PCM slightly reduce flow value. The compressive and flexural strength of cement mortar with PCM decreased with increasing the adding mount of PCM. The prediction model for compressive strength of cement mortar with different addition levels of PCMs are suggested in this study.

An Experimental Study on the Required Performances of Roof Concrete Placed in the In-ground LNG Storage Tank (지하식 LNG 저장탱크의 지붕 콘크리트의 요구성능에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.339-345
    • /
    • 2013
  • This study is to derive from the required performances and the optimum mix proportion of the roof concrete placed in the in-ground LNG storage tank with a capacity of 200000 $m^3$, and propose the actual data for site concrete work. The concrete placing work without sliding and segregation in the fresh concrete condition is very important because the slope of domed roof is varied in the large range by its curvature. Also the control of hydration heat and the strength development at test ages are classified with massive section about 1.4 m thick and considered to the pre-stressing work and removal of air support after concrete placing work. Considering above condition, slump range is selected $100{\pm}25$ mm under the slope $20^{\circ}$ and $150{\pm}25$ mm over the slope $20^{\circ}$ s until 60 minutes of elapsed time. Also, the roof concrete is satisfied with compressive strength range including design strength at 91 days (30 MPa), pre-stressing work at 7 days (10 MPa), air support removal work at 21 days (14 MPa). Replacement ratio of limestone powder is determined by confined water ratio test and main design factors include water-cement ratio (W/C), sand-aggregate ratio and dosage of admixture. As test results, the optimum mix proportion of the roof concrete used low heat cement is as followings. 1) Replacement ratio of limestone powder 25% by confined water ratio test 2) Water-cement ratio 57.8% 3) Sand-aggregate ratio 42.0%. Also, test results for the adiabatic temperature rising test is satisfied with its criteria and shown the lower value compared to preceding storage tank (TK-13, 14). These required performances and the optimum mix proportion is to apply the actual construction work.

Storability and Material Compatibility Test of Blended Hydrogen Peroxide Propellant (블렌딩 기법을 적용한 과산화수소 추진제의 저장성 및 재료 적합성 평가)

  • Lee, Jeong-Sub;Jang, Dong-Wuk;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.20-28
    • /
    • 2012
  • Blending method was applied to increase the performance of hydrogen peroxide which is called green propellant. 90 wt.% hydrogen peroxide was blended with ethanol which is less toxic fuel, and there was no storability decrease due to fuel addition. Inconel X750 and Tophet A showed good compatibility and high heat resistance, and SUS 316L was compatible. $Al_2O_3$, $Y_2O_3$, and $ZrO_2$, were coated on the material to improve heat resistance, and it was proved from endurance test that $Y_2O_3$ coating is not suitable and adhesive strength between coating and material is related with allowable temperature of material. Thruster test was performed to confirm the performance increase by blending method, and chamber temperature was $870^{\circ}C$ which is higher than $760^{\circ}C$ that is adiabatic chamber temperature of 90 wt.% hydrogen peroxide.

A Fundamental Study on the Correlationship between Hydration Heat and Autogenous Shrinkage of High Strength Concrete at an Early Age (초기재령 고강도콘크트의 수화발열과 자기수축 특성의 상관관계에 관한 기초적 연구)

  • Kim, Gyu-Yong;Lee, Eui-Bae;Koo, Kyung-Mo;Choi, Hyeong-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.593-600
    • /
    • 2008
  • In this study, to analyze the correlation between hydration heat and autogenous shrinkage of high strength concrete at an early age, hydration heating velocity and autogenous shrinking velocity as quantitative coefficients which represent the main properties of hydration heat and autogenous shrinkage were proposed. Two coefficients were calculated by statistical analysis and were equal with the regression coefficient. The complemented semi-adiabatic temperature rise test as test method to evaluate the hydration heat and autogenous shrinkage of concrete were proposed. In results of proposed test and analysis method, it was possible that early age properties of hydration heat and autogenous shrinkage of concrete were expressed numerically, and autogenous shrinkage was represented by equation with coefficients of hydration heat.

Storability and Material Compatibility Test of Blended Hydrogen Peroxide Propellant (블렌딩 기법을 적용한 과산화수소 추진제의 저장성 및 재료 적합성 평가)

  • Lee, Jeong-Sub;Jang, Dong-Wuk;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.150-158
    • /
    • 2011
  • Blending method was applied to increase the performance of hydrogen peroxide which is called green propellant. 90 wt.% hydrogen peroxide was blended with ethanol which is less toxic fuel, and there was no storability decrease due to fuel addition. Inconel X750 and Tophet A showed good compatibility and high heat resistance, and SUS 316L was compatible. Al2O3, Y2O3, and ZrO2, were coated on the material to improve heat resistance, and it was proved from endurance test that Y2O3 coating is not suitable and adhesive strength between coating and material is related with allowable temperature of material. Thruster test was performed to confirm the performance increase by blending method, and chamber temperature was $870^{\circ}C$ which is higher than $760^{\circ}C$ that is adiabatic chamber temperature of 90 wt.% hydrogen peroxide.

  • PDF

Counter-Current Gas-Liquid Two-Phase Flow in Narrow Rectangular Channels with Offset Strip Fins (휜이 있는 협소 사각 유로에서 대향류 기/액 2상 유동)

  • Sohn, B.H.;Kim, B.J.;Jeong, S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.229-234
    • /
    • 2001
  • An adiabatic counter-current vertical two-phase flow of air and water in narrow rectangular channels with offset strip fm was investigated experimentally. Tests were systematically performed with downward liquid superficial velocities and upward gas velocities covering 0 to 0.06 m/s and 0 to 2.5 m/s ranges, respectively. Two-phase flow regimes were classified by examining the video images of flow patterns in transparent test sections of 760 mm long and 100 mm wide channel with gaps of 3.0 and 5.0 mm. The channel average void fraction was measured by the quick-closing valve method. Unlike the flow regimes in the channels without fin, where bubbly, slug, chum, and annular flow were identified, only bubbly and chum flow regimes were found for the channels with offset strip fin. However the existence of fin in the channels showed negligible effects on the void fraction. Instead counter-current flow limitations were found to happen at lower air superficial velocity once offset strip fin was introduced in narrow rectangular channels.

  • PDF