• Title/Summary/Keyword: adhesion silicone adhesive

Search Result 18, Processing Time 0.028 seconds

Treatment and Characterization of Polyethylene Terephthalate Fibers with Silicone Rubber Adhesive for Heat-Resistant Adhesion (실리콘 고무와 내열접착 향상을 위한 Polyethylene Terephthalate 섬유 접착층의 제조 및 특성)

  • Kim, Jihyo;Lee, Sangoh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.31 no.2
    • /
    • pp.107-117
    • /
    • 2019
  • In case of pure rubber materials, the initial quality of the rubber materials would be excellent, however, the durability against external impact might be poor. In order to overcome the relatively low durability, textile cord could be employed with silicone rubber. We have studied the improvement of heat-resistant adhesion properties of silicone adhesives between silicone rubber and PET fibers by applying various conditions including dip solution recipe. The silicone rubber used was a platinum catalyst curing type and platinum catalyst type silicone adhesive was used as an adhesive to obtain an optimum adhesive force. Furthermore, the bonding mechanism between silicone and PET fiber was established.

Interfacial Adhesion Enhancement Process of Local Stiffness-variant Stretchable Substrates for Stretchable Electronic Packages (신축성 전자패키지용 강성도 국부변환 신축기판의 계면접착력 향상공정)

  • Park, Donghyeun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.111-118
    • /
    • 2018
  • In order to develop a local stiffness-variant stretchable substrate with the soft PDMS/hard PDMS/FPCB configuration consisting of two stiffness-different polydimethylsiloxane (PDMS) parts and flexible printed circuit board, a FPCB was bonded to PDMS using the acrylic-silicone double-sided tape and the interfacial adhesion of the PDMS/FPCB was evaluated. The pull strength of the FPCB, which was bonded to the fully cured PDMS using the silicone adhesive of the double-sided tape, was 259 kPa and the delamination during the pull test occurred at the interface between the PDMS and the silicone adhesive. On the contrary, the bonding process, for which the FPCB was bonded using the silicone adhesive to the PDMS partially cured for 15~20 minutes at $60^{\circ}C$ and then the PDMS was fully cured for 12 hours at $60^{\circ}C$, exhibited the remarkably enhanced pull strength of 1,007~1,094 kPa. With the above mentioned bonding process, the delamination during the pull test was observed at the interface between the FPCB and the acrylic adhesive of the acrylic-silicone double sided tape.

Improvement in Interfacial Performances of Silicone Rubber by Oxygen Plasma Treatment

  • Lee, Ki-Taek;Seo, Yu-Jin;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.232-233
    • /
    • 2005
  • The Surface of semi-conductive silicone rubber was treated by oxygen plasma to improve adhesion and electric performance in joints between insulating and semi-conductive silicone materials. Surface characterizations were assessed using contact angle measurement and Fourier transform infrared spectroscope (FTIR). Adhesion level was understood from T-peel tests between plasma treated semi-conductive and insulating material. Electrical breakdown strength was measured to understand the charge of electrical performance. From the results, the oxygen plasma treatment produces a significant increase in function group of containing oxygen which can be mainly ascribed to the creation of carbonyl groups on the silicone surface from the strength were improved. Therefore it is concluded then plasma treatment leads to decrease voids originating form poor adhesive, and the improve the adhesion in silicone interface. So we could obtain higher electrical design level of silicone material used for electrical apparatus using oxygen plasma treatment.

  • PDF

Adhesion and Electrical Performance by Roughness on Semiconductive-Insulation Interface Layer of Silicone Rubber (거칠기에 따른 반도전-절연 계면층에서 접착특성과 절연성능)

  • Lee, Ki-Taek;Hwang, Sun-Mook;Hong, Joo-Il;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.78-81
    • /
    • 2004
  • In this paper, the effect of adhesion properties of semiconductive-insulating interface layer of silicone rubber on electrical properties was investigated. Surface structure and adhesion of semiconductive silicon rubber by surface asperity was obtained from SEM and T-peel test. In addition, ac breakdown test was carried out for elucidating the change of electrical property by roughness treatment. From the results, Adhesive strength of semiconductive-insulation interface was increased with surface asperity. Dielectric breakdown strength by surface asperity decreased than initial Specimen, but increased from Sand Paper #1200. According to the adhesional strength data unevenness and void formed on the silicone rubber interface expand the surface area and result in improvement of adhesion. Before treatment Sand Paper #1200, dielectric breakdown strength was decreased by unevenness and void which are causing to have electric field mitigation small. After the treatment, the effect of adhesion increased dielectric breakdown strength. It is found that ac dielectric breakdown strength was increased with improving the adhesion between the semiconductive and insulating interface.

  • PDF

Synthesis, Curing and Properties of Silicone-Epoxies

  • Huang, Wei;Yuan, Youxue;Yu, Yunzhao
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.39-44
    • /
    • 2006
  • A new kind of silicone-epoxy composite is reported in this research. The silicone-epoxy resin was synthesized by the hydrosilylation of tetramethycyclotetrasiloxane and 4-vinyl-1-cyclohexene 1,2-epoxy with a high reaction yield. It was found that the obtained silicone-epoxy resin shows a high reactive activity to the aluminum complex-silanol catalyst. The resin could be cured under the catalysis of $(Al(acac)_3/Ph_2Si(OH)_2$ at a concentration below 0.1 wt% to give a hard cured resin showing excellent optical clarity, UV resistance and thermal stability. It was also found that the Si-H groups facilitated the curing reaction and the silicone-epoxy resin bearing Si-H group could be cured effectively even if $Ph_2Si(OH)_2h$ was absent. Moreover, the UV resistance and thermal stability were improved significantly by the introduction of Si-H groups. This is possibly due to the reductive property of Si-H groups which can annihilate radical and peroxide effectively. This kind of silicone-containing epoxy composite might have very promising applications as optical resin, optical adhesive and encapsulation materials for electronic devices.

  • PDF

UV-cured Pressure Sensitive Adhesive for Protective Film Application (보호필름용 자외선경화형 점착제)

  • Jamaluddin, Jamarosliza;Lee, Myung Cheon
    • Journal of Adhesion and Interface
    • /
    • v.18 no.3
    • /
    • pp.134-140
    • /
    • 2017
  • In this study, we made UV cured acrylic pressure sensitive adhesive containing silicone-urethane-acrylate (SUA) oligomer for a coating on protective film and investigated the effect of SUA oligomer content and UV-dose on adhesion properties. The results illustrated that peel strength decreases with increasing oligomer content and UV-dose, while holding power increases. The gel fractions sharply increased after UV irradiation and then remain constant with prolonged UV exposure. From peel-off test, sample S70 (70% oligomer content) shows the best peelability and removability without remaining any mark or adhesive material on the test substrate than S50 (50% oligomer content) and S60 (60% oligomer content). Sample S70 also showed a surface energy lower than $26mJ/m^2$ and a transmittance higher than 95% at UV-dose 1857 and $2270mJ/cm^2$ which met the required properties for protective film application.

Evaluation of 2 Part Curtainwall Structural Silicone Sealant (커튼월용 2액형 구조용 실란트 혼합비별 물성 평가 연구)

  • Kim, Sung Hyun;Jung, Jin-young;Ahn, Myung-Su;Seo, YeonWon;Bae, Keesun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.78-80
    • /
    • 2014
  • Silicone structural glazing (SSG) is a method utilizing a silicone adhesive to attach glass, metal, or other panel material to the structure of a building. Windload and other impact loads on the facade are transferred from the glass or panel through the silicone structural sealant to the systems' framework. Silicone structural glazing systems are currently a very common method of glazing throughout the world. Locally, structural silicone glazing has become very common to achieve aesthetically pleasing and high utilization of small land for both residential and commercial building. Although structural silicone glazing has been utilized for approximately thirty years in Korea, the understanding of its technology was low and limited. Consequently, Korean projects experienced many quality issues during assembly and construction, even in very recently finished buildings. Adhesion loss and water infiltration occurred on more than one project, and the time and cost to repair these issues were substantial. In general, there are two kinds of structural silicones depending on fabrication methods. 1part structural silicone is for site glazing system and 2part structural silicone is for unitized factory glazing system. In this paper, 2part structural silicone which is very common for factory fabricating curtainwall systems was evaluated with regards to various mixing ratio. Since the structural performance of 2part sealant can be affected by mixing ratios, some extra ranges of recommended mixing ratio were evaluated to see any performance differences. Besides on cure profile, comparative evaluations for mechanical properties and adhesion develop on common building substrates were conducted.

  • PDF

Surface Properties and Adhesion of Semiconducting and Insulating Silicone Rubber by Corona Discharge Treatment (코로나 방전처리에 의한 반도전-절연 실리콘 고무의 표면특성 및 접착특성)

  • Lee, Ki-Taek;Hwang, Sun-Mook;Hong, Joo-Il;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.868-872
    • /
    • 2006
  • In this work, the effects of the corona treatment on surface properties of semiconducting silicone rubber were investigated in terms of contact angles, ATR-FTIR(Attenuated total reflection fourier transform infrared spectroscopy) and XPS(X-ray photoelectron spectroscopy). And the adhesive characteristics were studied by measuring the T-peel strengths. Based on chemical analysis, the surface modification can be mainly ascribed to the creation of chemically active functional groups such as C-O, C=O and C-OH on semiconducting silicone surface. This oxidized rubber layer is inorganic silica-like structure of Si bound with three to four oxygen atoms ($SiOx,\;x=3{\sim}4$. The Corona treatment produces an increase in joint strength that is maximum for 10 min treatment. However, due to brittle property of this oxidized layer, the highly oxidized layer from too much extended treatment could be act as a weak point, decreasing the adhesion strength.

A STUDY ON THE PHYSICAL PROPERTIES AND COLOR STABILITY OF MAXILLOFACIAL PROSTHETIC SILICONE MATERIAL (악안면 보철용 실리콘의 물리적 특성 및 색조안정성에 관한 연구)

  • Park, Chan-Jin;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.2
    • /
    • pp.330-343
    • /
    • 1997
  • Extraoral maxillofacial prostheses are essential for restoring facial structures that are lost as a result of congenital missing, injuries from accidents, surgical treatments of head and neck cancer. Recently, silicone is the most useful material for this purpose and is more advantageous than other maxillofacial prosthetic materials. However, there are some problems for long-term usage of silicone prostheses due to tear and color change. These are major contributing environmental factors to those problems that are such as ultraviolet light, cleansing agents, changes in humidity and successive adhesion and removal. The aim of this study is to evaluate the physical properties and color changes of maxillofacial prosthetic silicone material by those environmental factors using A-2186 silicone material (Factor II, USA) and two pigments, cadmium yellow medium and cosmetic red. Aluminium molds were fabricated according to the ASTM No. D412 & D624 specifications and resulted specimens from molds were fabicated and treated as follows. Control group and experimental I group were fabricated with 0.1% wt. pigment mixing in silicone elastomer and II-1 group, II-2 group of experimental II group were fabricated with 0.2%, 0.3% wt. pigment mixing in silicone elastomer, respectively. Control group was kept in darkroom at room temperature, I-1 group was kept under natural sunlight during 1week, I-2 group was soaked in 20% soap water during 1wk. I-3 group was successively adhered and removed 200 times on inner region of arm using Daro adhesive-33. Experimental II groups were kept in darkroom at room temperature. Instron universal testing machine was used to measure the % elongation, tensile strength, tear strength of control, experimental I, II groups and reflectance spectrophotometer(COLOR EYE-3000, Macbeth, USA) was used to measure the color differences between control group and experimental I group. The results were as follows : 1. When compared with control group, natural weathering group and 20% soap-water soaking group had no significant differences in % elongation(p>0.05). 2. 200 times successive adhesion and removal group, 0.2% wt. pigment group and 0.3% wt. pigment group had significant decreases in % elongation(p<0.05). 3. Natural weathering group, 20% soap-water soaking group and 200 times successive adhesion and removal group had no significant differences in tensile strength (p>0.05). 4. 0.2%, 0.3% wt. pigment groups had significant decreases in tensile strength(p<0.05). 5. Values of all experimental groups were decreased in tear strength. and 200 times successive adhesion and removal group had significant decrease in tear strength(p<0.05). 6. Natural weathering group and 20% soap-water soaking group had significant color differences(${\Delta}E$) and it could be detectable to naked eye(p<0.05). 7. Color differences between control group and 200 times adhesion and removal group were not detectable to the naked eye (${\Delta}E<1.0$).

  • PDF

Adhesives and Sealants Used in Machinery and Equipment Assembly, Maintain and Repair

  • Zhai, Haichao;Li, Yinbai;Lin, Xinsong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.1
    • /
    • pp.30-36
    • /
    • 2002
  • In this paper, some idea about the use of Metal and ceramic filled epoxy adhesive, Anaerobic adhesive and RTV silicone in the assembly, maintain and repair of machinery and equipment is given. Many examples which have been successfully used in Chinese industry are introduced: ${\bullet}$ Wear, Abrasion, Corrosion/Erosion Resistance and Metal Rebuilding Worn shafts, Scored Hydraulic Ram, Bearing Housings, Slurry Pumps (Bodies & Impellers), Slide-ways, Heat Exchangers, Cracked Castings and Molds. Leaking Pipes and Tanks. ${\bullet}$ Locking and Retaining Thread, Bearing, Keyways, Bolts, Nuts, Studs, Gears, Collars, Motors. ${\bullet}$ Scaling and Gasketing Flanges, Pipe Joints, Machined surfaces.

  • PDF