• Title/Summary/Keyword: adhesion force

Search Result 476, Processing Time 0.024 seconds

A Study on Characteristics of Surface Modified Polyimide Film by Wet Process (습식 표면개질 처리된 폴리이미드 필름 표면의 특성에 관한 연구)

  • Koo, S.B.;Lee, H.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.4
    • /
    • pp.166-172
    • /
    • 2006
  • Metallized Polyimide films are extensively used as base materials in microelectronics, optical and automotive applications. However it is difficult to deposit metals on those because of their structural stabilities. In this work, polyimide films are modified by a wet process with alkalinemetalhydroxide and additives to introduce functional groups. The surface molecular structures of polyimide are investigated using X-ray photoelectron spectroscopy(XPS), fourier transform infrared reflection spectroscopy(FTIR-ATR), atomic force micro-scopic(AFM). XPS spectra and FTIR spectra show that the surface structure of polyimide is converted into potassium polyamate. AFM image and AFM cross-sectional analyses reveal the increased roughness on the modified surface of polyimide films. As a result, it is shown that the adhesion strength between polyimide surface and electroless nickel layer is increased by the nano-anchoring effect.

Effect of PVA Brush Contamination on Post-CMP Cleaning Performance (Post-CMP Cleaning에서 PVA 브러시 오염이 세정 효율에 미치는 영향)

  • Cho, Han-Chul;Yuh, Min-Jong;Kim, Suk-Joo;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.114-118
    • /
    • 2009
  • PVA (polyvinyl alcohol) brush cleaning method is a typical cleaning method for semiconductor cleaning process especially post-CMP cleaning. PVA brush contacts with the wafer surface and abrasive particle, generating the contact rotational torque of the brush, which is the removal mechanism. The brush rotational torque can overcome theoretically the adhesion force generated between the abrasive particle and wafer by zeta potential. However, after CMP (chemical mechanical polishing) process, many particles remained on the wafer because the brush was contaminated in previous post-CMP cleaning step. The abrasive particle on the brush redeposits to the wafer. The level of the brush contamination increased according to the cleaning run time. After cleaning the brush, the level of wafer contamination dramatically decreased. Therefore, the brush cleanliness effect on the cleaning performance and it is important for the brush to be maintained clearly.

Study on the ITO Pre-treatment for the Highly Efficient Solution Processed Organic Light-emitting Diodes (고효율의 용액공정용 유기 발광 다이오드 제작을 위한 ITO 전처리 연구)

  • Choi, Eun-Young;Seo, Ji-Hyun;Choi, Hak-Bum;Je, Jong-Tae;Kim, Young-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • We demonstrated that the solution processed organic light-emitting diodes (OLEDs) have the high efficiency with pre-treated indium-tin-oxide (ITO). ITO surface was pre-treated with four methods and compared each other. The pre-treatment of ITO surface improves the chemical and physical characteristics of ITO such as the surface roughness, adhesion property, and the hole injection ability. These properties were analyzed by the contact angle, atomic force microscope (AFM) image, and the current flow character in device. As a results, the device with ITO pre-treated by $O_2$ plasma shows the current efficiency of 5.93 cd/A, which is 1.5 times the device without pre-treatment.

Study on frictional behavior of carbon nanotube with respect to potential function by molecular dynamics simulation (카본나노튜브의 포텐셜 함수에 따른 마찰거동에 대한 분자동역학 시뮬레이션 연구)

  • Kim, Hyun-Joon;Kim, Dae-Eun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.2
    • /
    • pp.36-41
    • /
    • 2013
  • Frictional behavior of a single carbon nanotube(CNT) was investigated using molecular dynamics simulation. A single CNT aligned horizontally on silver or graphene substrate was modeled to evaluate its frictional behavior such as frictional force and rolling/sliding motion with respect to potential parameter and lattice structure of the substrate. As a result, it was found that friction and rolling was affected by adhesion between two surfaces and period of the rolling depended on lattice distance of the substrate.

A Study of Electromechanical Nanotube Memory Device using Molecular Dynamics

  • Lee Jun-Ha;Lee Hoong-Joo;Kwon Oh-Keun;Kang Jeong-Won
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.27-30
    • /
    • 2005
  • A nanoelectromechanical (NEM) switching device based on carbon nanotube (CNT) was investigated using atomistic simulations. The model schematics for a CNT based three-terminal NEM switching device fabrication were presented. for the CNT-based three-terminal NEM switch, the interactions between the CNT-lever and the drain electrode or the substrate were very important. When the electrostatic force applied to the CNT-lever was the critical point, the CNT-lever was rapidly bent because of the attractive foroe between the CNT-lever and the drain. The energy curves for the pull-in and the pull-out processes showed the hysteresis loop that was induced by the adhesion of the CNT on the copper, which was the interatomic interaction between the CNT and the copper.

  • PDF

A Study on the Quality Test of Grinding Disk Assembly for Crushing Material in Secondary Battery (이차전지 원료 해쇄용 Grinding Disc Assembly 품질 시험에 관한 연구)

  • Sang-Pil Han;Dong-Hyuk Lee
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.42-46
    • /
    • 2023
  • Currently, fossil resources are depleting rapidly. We are looking for energy to replace fossil fuels. They are trying to use electricity to replace internal combustion locomotives. Secondary battery raw materials and chemical additives are pulverized by the high-speed rotation of the grinding disc of the Classifier Separator Mill. Grinding Disc Assembly requires characteristics to withstand abrasion, corrosion, high-speed rotational force and impact. Domestic and foreign grinding discs were analyzed through abrasion resistance, hardness, bending strength, and tensile adhesion strength tests.

Study about cracking reducing of the concrete by utilizing fiber-reinforced admixture (무근콘크리트 균열저감을 위한 배합설계 및 시공프로세스 수립에 대한 연구)

  • Kim, Dae-Geon;Choi, Sang-Hwan;Moon, Gyeong-Sik;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.140-141
    • /
    • 2014
  • Nowadays, as to increased the workability of the press concrete and decrease the cracking, the fiber-reinforced admixture has been widely used. As the low adhesion force between the paste and fiber-reinforced admixture, it was considered as could not be used in the structure. Even more, as the loss of flowability and the exposure of the fiber, further study is needed. In this study, as the different environment and position of the building, the dosages of the fiber-reinforced admixture has also been changed. The fundamental properties and cracking of fiber-reinforced concrete have been tested.

  • PDF

Study about cracking reducing of the concrete by utilizing fiber-reinforced admixture (섬유보강재 혼입비율 및 길이에 따른 콘크리트 균열제어에 관한 연구)

  • Kim, Dae-Geon;Choi, Sang-Hwan;Moon, Gyeong-Sik;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.144-145
    • /
    • 2014
  • Nowadays, as to increased the workability of the press concrete and decrease the cracking, the fiber-reinforced admixture has been widely used. As the low adhesion force between the paste and fiber-reinforced admixture, it was considered as could not be used in the structure. Even more, as the loss of flowability and the exposure of the fiber, further study is needed. In this study, as the different environment and position of the building, the dosages of the fiber-reinforced admixture has also been changed. The fundamental properties and cracking of fiber-reinforced concrete have been tested.

  • PDF

The Experimental Study on the Bond behavior of High strength concrete (고강도 콘크리트의 부착거동에 관한 실험적 연구)

  • Lee, Joon-Gu;Kim, Woo;Park, Kwang-Su;Kim, Dae-Joung;Lee, Wong-Chan;Kim, Han-Joung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.774-780
    • /
    • 1999
  • The study of bond behavior between concrete and rebar has been performed for a long time. On this study, we tried to analysed variation of bond behaviors quantitatively with varying the strength of concrete. Bond stress which observed below the neutral surface of beam and at connecting part of beam and column is affected by various bond parameters. Resistance of deformed bars which embedded in concrete to the pullout force is divided 1) chemical adhesive force 2) frictional force 3) mechanical resistance of ribs to the concrete and these horizontal components of resistance is being bond strength. We selected the most common and typical variable which is concrete strength among various variables. So we used two kinds of concrete strength like as 25MPa(NSC) and 65MPa(HSC). Tension Test was performed to verify how bond behavior varied with two kinds of concrete strength. Concentration of bond stress was observed at load-end commonly in Tension Test of the initial load stage. At this stage stress distribution was almost coincident at each strength. As tension load added, this stress distribution had difference gradually and movement of pick point of bond stress to free-end and central section was observed. This tendency was observed at first and moving speed was more fast in NSC. At the preceeding result the reason of this phenomenon is considered to discretion of chemical adhesion and local failure of concrete around rebar in load-end direction. Especially, when concrete strength was increased 2.6 times in tension test, ultimate bond strength was increased 1.45 times. In most recent used building codes, bond strength is proportioned to sqare root of concrete compressive strength but comparison of normalized ultimate bond strength was considered that the higher concrete strength is, the lower safety factor of bond strength is in each strength if we use existing building codes. In Tension Test, in case of initial tensile force state, steel tensile stress of central cross section is not different greatly at each strength but tensile force increasing, that of central cross section in NSC was increased remarkably. Namely, tensile force which was shared in concrete in HSC was far greater than that of concrete in NSC at central section.

  • PDF

Preparation of Langmuir-Blodgett Film of Silica Coated Gold Nanoparticles (실리카 코팅 AuNPs의 Langmuir-Blodgett 박막 제조)

  • Park, Minsung;Choi, Jaeyoo;Jung, Jaeyeon;Cheng, Jie;Hyun, Jinho
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.144-148
    • /
    • 2010
  • It reports the surface modification of gold nanoparticles (AuNPs) by the synthesis of thin silica layer and the fabrication of AuNPs monolayer on the glass surface. AuNPs of 10 nm in diameter were prepared in aqueous solution. A silica layer was synthesized at the different concentration of tetraethlyorthosilicate for the control of silica layer thickness. Langmuir-Blodgett (LB) film was fabricated by dispersing AuNPs on the aqueous solution and raising a surface pressure up to a solid phase. The change of AuNPs' size was observed by the change of UV/Visible spectra. Atomic force microscopic images confirmed the reliable fabrication of AuNPs LB films.