• Title/Summary/Keyword: adhesion

Search Result 5,622, Processing Time 0.031 seconds

Analysis of the Molecular Event of ICAM-1 Interaction with LFA-1 During Leukocyte Adhesion Using a Reconstituted Mammalian Cell Expression Model

  • Han, Weon-Cheol;Kim, Kwon-Seop;Park, Jae-Seung;Hwang, Sung-Yeoun;Moon, Hyung-Bae;Chung, Hun-Taeg;Jun, Chang-Duk
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.253-262
    • /
    • 2001
  • Ligand-receptor clustering event is the most important step in leukocyte adhesion and spreading on endothelial cells. Intercellular adhesion molecule-1 (ICAM-1) has been shown to enhance leukocyte adhesion, but the molecular event during the process of adhesion is unclear. To visualize the dynamics of ICAM-1 movement during adhesion, we have engineered stable Chinese hamster ovary cell lines expressing ICAM-1 fused to a green fluorescent protein (IC1_GFP/CHO) and examined them under the fluorescence microscopy. The transfection of IC1_GFP alone in these cells was sufficient to support the adhesion of K562 cells that express $\alpha$L$\beta$2 (LFA-1) integrin stimulated by CBR LFA-1/2 mAb. This phenomenon was mediated by ICAM-1-LFA-1 interactions, as an mAb that specifically inhibits ICAM-1-LFA-1 interaction (RRl/l) completely abolished the adhesion of LFA-1* cells to IC1_ GFP/CHO cells. We found that the characteristic of adhesion was followed almost immediately (~10 min) by the rapid accumulation of ICAM-1 on CHO cells at a tight interface between the two cells. Interestingly, ICI_GFP/CHO cells projected plasma membrane and encircled approximately half surface of LFA-1+ cells, as defined by confocal microscopy. This unusual phenomenon was also confirmed on HUVEC after adhesion of LFA-1* cells. Neither cytochalasin D nor 2,3-butanedione 2-monoxime an inhibitor of myosin light chain kinase blocked LFA-1-mediated ICAM-1 clustering, indicating that actin cytoskeleton and myosin-dependent contractility are not necessary for ICAM-1 clustering. Taken together, we suggest that leukocyte adhesion to endothelial cells induces specialized form of ICAM-1 clustering that is distinct from immunological synapse mediated by T cell interaction with antigen presenting cells.

  • PDF

Tongue-Lip Adhesion Using an Alveolar Protector Appliance for Management of Pierre Robin Sequence (피에르 로빈 연속증의 치료로써 치조 보호 장치를 이용한 혀-하순 유착술)

  • Lee, Jang-Won;Park, Beyoung-Yun
    • Archives of Plastic Surgery
    • /
    • v.38 no.4
    • /
    • pp.547-551
    • /
    • 2011
  • Purpose: Pierre Robin sequence is a congenital malformation in which micrognathia causes glossoptosis and airway obstruction. If conservative treatment fails, surgical procedures such as tongue-lip adhesion can be performed. However, this procedure remains a subject of debate, with favorable results being countered by reports of complications. To overcome the above limitations, we revised the traditional method of tongue-lip adhesion using an alveolar protector. Methods: Between 1992 and 2011, a total of eight patients were identified with Pierre Robin sequence and were treated with tongue-lip adhesion. Two of these eight tongue-lip adhesion procedures were performed with an alveolar protector. The operative technique for tongue-lip adhesion was similar to that described in other published reports. The alveolar protector was inserted between the ventral surface of the tip of the tongue and the lower labial sulcus. Results: Tongue-lip adhesion failed in two patients because of wound dehiscence. The primary surgical success rate was 66.7%. In the two tongue-lip adhesion procedures performed with the alveolar protector, we observed no postoperative complications. Conclusion: Resistance to traction of the tongue can be encountered with nonunionized symphysis menti, causing loosening of the traction suture through the symphysis menti. This can lead to backward positioning of tongue, resulting in dehiscence of tongue lip adhesion. The alveolar protector is a good adjunct to tongue-lip adhesion because this method avoids postoperative loosening of the traction suture and wound dehiscence. It is a simple and effective auxiliary method that yields functional improvement.

A Study on the Improvement of Adhesion in Tension and Flexure of Polymer Cement Mortar Depending on Various Test Methods (시험방법에 따른 폴리머 시멘트 모르타르의 인장 및 휨접착강도 개선에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.47-57
    • /
    • 2019
  • The purpose of this study is to evaluate the improvement effect of adhesion in tension and flexure of polymer cement mortars that have widely used as a repair-reinforcement material in construction field according to adding of polymer dispersions depending on different three types test methods. From the test results, the adhesion performance is improved with a raise in polymer-cement ratio irrespective of the type of polymer. The maximums of A type adhesion in tension, B type adhesion in tension and adhesion in flexure show 1.90 times, 2.17 times and 1.83 times, respectively that of plain cement mortar. The relative strength ratios, B type adhesion in tension and adhesion in flexure of polymer cement mortars to tensile and flexural strengths of plain mortar respectively are in ranges of 50.1% to 101.7% and 73.8% to 132.9% compared to 46.9% of plain mortar. It is apparent that polymer cement mortars with EVA and polymer cement ratios of 10% to 15% are recommended considering its adhesion performance and cost as a repair-reinforcement material in construction field.

Adhesion Reliability Enhancement of Silicon/Epoxy/Polyimide Interfaces for Flexible Electronics

  • Kim, Sanwi;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.63-69
    • /
    • 2012
  • Adhesion and mechanical reliability of silicon/epoxy/polyimide interfaces are critical issues for flexible electronics. Bonds between these interfaces are mainly hydrogen bonds, so their adhesion is weaker than cohesive fracture toughness and vulnerable to moisture. In order to enhance adhesion and suppress moisture-assisted debonding, UV/Ozone treatment and innovative sol-gel derived hybrid layers were applied to silicon/epoxy/polyimide interfaces. The fracture energy and subcritical crack growth rate were measured by using a double cantilever beam (DCB) fracture mechanics test. Results showed that UV/Ozone treatment increased the adhesion, but was not effective for improving reliability against humidity. However, by applying sol-gel derived hybrid layers, adhesion increase as well as suppresion of moisture-assisted cracking were achieved.

The Effects of Surface Energy and Roughness on Adhesion Force (표면에너지와 거칠기가 응착력에 미치는 영향)

  • Rha, Jong-Joo;Kwon, Sik-Cheol;Jeong, Yong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1335-1347
    • /
    • 2006
  • Surface energies calculated from measured contact angles between several solutions and test samples, such as Si wafer, $Al_2O_3$, $SiO_2$, PTFE(Polytertrafluoroethylene), and DLC(Diamond Like Carbon) films, based on geometric mean method and Lewis acid base method. In order to relate roughness to adhesion force, surface roughness of test samples were scanned large area and small by AFM(Atomic Force Microscopy). Roughness was representative of test samples in large scan area and comparable with AFM tip radius in small scan area. Adhesion forces between AFM tip and test samples were matched well with order of roughness rather then surface energy. When AFM tips having different radius were used to measure adhesion force on DLCI film, sharper AFM tip was, smaller adhesion force was measured. Therefore contact area was more important factor to determine adhesion force.

Hybrid Re-Adhesion Control Method for Traction System of High-Speed Railways with Parallel Induction Motor Control (유도전동기 병렬 제어형 고속전철 추진시스템의 혼합형 재점착 제어기법)

  • Hwang, Don-Ha;Kim, Mun-Seop;Ryu, Hong-Je;Park, Do-Yeong;Kim, Jong-Su
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.1
    • /
    • pp.40-47
    • /
    • 2002
  • This paper describes a re-adhesion control method for the Korean High-Speed Train (KHST) with parallel induction motor drive. To keep a traction efficiency and to improve vehicle maintenance, the adhesion characteristics between wheel and rail are analyzed. Also the re-adhesion controller is designed as the subsystem of induction motor vector control. In order to verify performance of the proposed control techniques, the simulation is executed by train model and a downscaled re-adhesion control simulator is utilized. Both simulation and running test results show that good re-adhesion characteristics are obtained.

Four Point Bending Test for Adhesion Testing of Packaging Strictures: A Review

  • Mahan, Kenny;Han, Bongtae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.33-39
    • /
    • 2014
  • To establish the reliability of a packaging structures, adhesion testing of key interfaces is a critical task. Due to the material mismatch, the interface may be prone to delamination failure due to conditions during the manufacturing of the product or just from the day-to-day use. To assess the reliability of the interface adhesion strength testing can be performed during the design phase of the product. One test method of interest is the four-point bending (4PB) adhesion strength test method. This test method has been implemented in a variety of situations to evaluate the adhesion strength of interfaces in bimaterial structures to the interfaces within thin film multilayer stacks. This article presents a review of the 4PB adhesion strength testing method and key implementations of the technique in regards to semiconductor packaging.

Re-adhesion Control for Wheeled Robot Using Fuzzy Logic (퍼지 제어기를 이용한 이동 로봇의 재점착 제어)

  • Kwon, Sun-Ku;Huh, Uk-Youl;Kim, Hak-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2423-2425
    • /
    • 2004
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and the floor decreases suddenly, the robot has slip state. First of all, this paper models adhesion characteristics and slip in wheeled robot. Secondly, the paper proposes estimation method of adhesion force coefficient(AFC) according to slip velocity. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. The paper proposes an anti-slip control system based on an ordinary disturbance observer, that is, the re-adhesion control is achieved by reducing the driving torque enough to give maximum adhesion force coefficient. fuzzy logic controller(FLC) is petty useful with slip through that compare fuzzy with PI control for the controller performance. These procedure is implemented using a Pioneer 2-DXE parameter.

  • PDF

Influence of Parameters on Adhesion Strength on TiN Film by using R.F. Plasma Assisted Chemical Vapor Deposition (PACVD로 증착된 TiN 박막의 밀착성에 관하여)

  • Shin, Y.S.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 1990
  • In this study, TiN film was deposited onto steel by R.F.-PACVD in order to investigate the influence of parameters on the adhesion strength between film and substrate. Experimental results showed that adhesion strength by SAT is different from by optical microscopy. Adhesion strength is increased when the deposition temperature increases and is influenced by R.F. power and electrode distance. Especially heat treatment on the substrate has influenced over the adhesion strength, so it showed the 22 Newtons in adhesion strength by SAT and adhesion strength is decreased when deposition thickeness is thick and hardness is high. Also if the film is thick and high hardness simultaneous, the film was delaminated seriously.

  • PDF

A study on the Nano adhesion and Friction at Different Contact Conditions using SPM (SPM을 이용한 접촉조건 변화에 따른 미소응착 및 마찰특성에 관한 연구)

  • 윤의성;박지현;양승호;공호성
    • Tribology and Lubricants
    • /
    • v.17 no.3
    • /
    • pp.191-197
    • /
    • 2001
  • Nano adhesion and friction characteristics between SPM(scanning electron microscope) tips and flat plates of different materials were experimentally studied. Tests were performed to measure adhesion and friction in AFM(atomic force microscope) and LFM(lateral force microscope) modes in different conditions of relative humidity. Three different Si$_3$N$_4$ tips (rdaii : 15nm, 22nm and 50 nm) and three different flat plates of Si-wafer(100), W-DLC(tungsten-incorporated diamond-like carbon) and DLC were used. Results generally showed that adhesion and friction increased with the tip radius, and W-DLC and DLC surfaces were superior to Si-wafer. But the adhesion force of Si-wafer showed non linearity with the tip radius while W-DLC and DLC surfaces showed good correlation to the “JKR model”. It was found that high adhesion force between Si-wafer and a large radius of tip was caused by a capillary action due to the condensed water.