• Title/Summary/Keyword: address matching

Search Result 128, Processing Time 0.024 seconds

A Study of the 3D-Reconstruction of indoor using Stereo Camera System (스테레오 카메라를 이용한 실내환경의 3차원 복원에 관한 연구)

  • Lee Dong-Hun;Um Dae-Youn;Kang Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.42-47
    • /
    • 2005
  • In this papcr, we address the 3D reconstruction of the indoor circumstance using what the data is extracted by a pall of image from Stereo Camera. Generally sucaking, there arc three methods to extract 3-Dimensional data using IR sensor, Laser sensor and Stereo camera sensor. The best is stereo camera sensor which can show a high performance at a reasonable price. We used 'Window Correlation Matching Method' to extract 3-Dimensional data in stereo image. We proposed new Method to reduce error data, said 'Histogram Weighted Hough Transform'. Owing to this mettled, we reduced error data in each stereo image. So reconstruction is well done. 3-Dimensional Reconstruction is accomplished by using the DirectX that is well known as 3D-Game development tool. We show that the stereo camera can be not only used to extract 3-dimensional data but also applied to reconstruct the 3-Dimensional circumstance. And we try to reduce the error data using various method.

A New Adaptive Window Size-based Three Step Search Scheme (적응형 윈도우 크기 기반 NTSS (New Three-Step Search Algorithm) 알고리즘)

  • Yu Jonghoon;Oh Seoung-Jun;Ahn Chang-bum;Park Ho-Chong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.1 s.307
    • /
    • pp.75-84
    • /
    • 2006
  • With considering center-biased characteristic, NTSS(New Three-Step Search Algorithm) can improve the performance of TSS(Three-Step Search Algorithm) which is one of the most popular fast block matching algorithms(BMA) to search a motion vector in a video sequence. Although NTSS has generally better Quality than TSS for a small motion sequence, it is hard to say that NTSS can provide better quality than TSS for a large motion sequence. It even deteriorates the quality to increase a search window size using NTSS. In order to address this drawback, this paper aims to develop a new adaptive window size-based three step search scheme, called AWTSS, which can improve quality at various window sizes in both the small and the large motion video sequences. In this scheme, the search window size is dynamically changed to improve coding efficiency according to the characteristic of motion vectors. AWTSS can improve the video quality more than 0.5dB in case of large motion with keeping the same quality in case of small motion.

Planetary Long-Range Deep 2D Global Localization Using Generative Adversarial Network (생성적 적대 신경망을 이용한 행성의 장거리 2차원 깊이 광역 위치 추정 방법)

  • Ahmed, M.Naguib;Nguyen, Tuan Anh;Islam, Naeem Ul;Kim, Jaewoong;Lee, Sukhan
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.26-30
    • /
    • 2018
  • Planetary global localization is necessary for long-range rover missions in which communication with command center operator is throttled due to the long distance. There has been number of researches that address this problem by exploiting and matching rover surroundings with global digital elevation maps (DEM). Using conventional methods for matching, however, is challenging due to artifacts in both DEM rendered images, and/or rover 2D images caused by DEM low resolution, rover image illumination variations and small terrain features. In this work, we use train CNN discriminator to match rover 2D image with DEM rendered images using conditional Generative Adversarial Network architecture (cGAN). We then use this discriminator to search an uncertainty bound given by visual odometry (VO) error bound to estimate rover optimal location and orientation. We demonstrate our network capability to learn to translate rover image into DEM simulated image and match them using Devon Island dataset. The experimental results show that our proposed approach achieves ~74% mean average precision.

A Method to Design Connectors to Resolve Partial Matching Problems in CBD (CBD의 부분 매칭 문제 해결을 위한 커넥터 설계 기법)

  • Min, Hyun-Gi;Kim, Soo-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1205-1216
    • /
    • 2005
  • Component-based Development (CBD) is gaining popularity as an effective reuse technology. Especially commercial-off-the-shelf (COTS) components are mainly for inter-organizational reuse, rather than intra-organizational reuse. One of the essential tasks in CBD is to reuse the right components that provide the functionality and interface required by component consumers. If candidate components provide a limited applicability and customizability, a component consumer cannot reuse the components in application development. To resolve this partial matching problem, we need smart connectors that fill the gap between candidate components and the specification of components required. Previous researches about smart connector describe only connector types to resolve mismatch problems. However, previous researches do not address the identification and design method to resolve the problems. In this paper, we suggest taxonomy of various mismatch problems to identify partial match problems between requirements of the application and components. We identify smart connector types and suggest a systematic process for designing smart connectors using the taxonomy. Therefore, components that have the problems can be used to develop applications.

Shot Boundary Detection Algorithm by Compensating Pixel Brightness and Object Movement (화소 밝기와 객체 이동을 이용한 비디오 샷 경계 탐지 알고리즘)

  • Lee, Joon-Goo;Han, Ki-Sun;You, Byoung-Moon;Hwang, Doo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.35-42
    • /
    • 2013
  • Shot boundary detection is an essential step for efficient browsing, sorting, and classification of video data. Robust shot detection method should overcome the disturbances caused by pixel brightness and object movement between frames. In this paper, two shot boundary detection methods are presented to address these problem by using segmentation, object movement, and pixel brightness. The first method is based on the histogram that reflects object movements and the morphological dilation operation that considers pixel brightness. The second method uses the pixel brightness information of segmented and whole blocks between frames. Experiments on digitized video data of National Archive of Korea show that the proposed methods outperforms the existing pixel-based and histogram-based methods.

Symbol recognition using vectorial signature matching for building mechanical drawings

  • Cho, Chi Yon;Liu, Xuesong;Akinci, Burcu
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.155-177
    • /
    • 2019
  • Operation and Maintenance (O&M) phase is the main contributor to the total lifecycle cost of a building. Previous studies have described that Building Information Models (BIM), if available with detailed asset information and their properties, can enable rapid troubleshooting and execution of O&M tasks by providing the required information of the facility. Despite the potential benefits, there is still rarely BIM with Mechanical, Electrical and Plumbing (MEP) assets and properties that are available for O&M. BIM is usually not in possession for existing buildings and generating BIM manually is a time-consuming process. Hence, there is a need for an automated approach that can reconstruct the MEP systems in BIM. Previous studies investigated automatic reconstruction of BIM using architectural drawings, structural drawings, or the combination with photos. But most of the previous studies are limited to reconstruct the architectural and structural components. Note that mechanical components in the building typically require more frequent maintenance than architectural or structural components. However, the building mechanical drawings are relatively more complex due to various type of symbols that are used to represent the mechanical systems. In order to address this challenge, this paper proposed a symbol recognition framework that can automatically recognize the different type of symbols in the building mechanical drawings. This study applied vector-based computer vision techniques to recognize the symbols and their properties (e.g., location, type, etc.) in two vector-based input documents: 2D drawings and the symbol description document. The framework not only enables recognizing and locating the mechanical component of interest for BIM reconstruction purpose but opens the possibility of merging the updated information into the current BIM in the future reducing the time of repeated manual creation of BIM after every renovation project.

A Study on the Detection of Marine Debris in Collection Blind Spots using Drones and a Method for Matching Latitude and Longitude (드론을 활용한 수거사각지대 해양쓰레기 탐지 및 위경도 매칭 방법에 관한 연구)

  • Sang-Hyun Ha;Eun-Sung Choi;Ji Yeon Kim;Sung-Hoon Oh;Seok Chan Jeong
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.73-82
    • /
    • 2023
  • Marine debris not only affects the survival of marine life, water pollution, and scenery but also has secondary effects on economic loss and human health. While research on underwater and surface debris is actively ongoing, solutions to marine debris in hard-to-reach blind spots are being developed slowly. To address this problem, we utilize drones to detect and track marine debris in blind spots such as tetrapods. The detected debris is then visualized by calculating its location coordinates using the drone's GPS, altitude, and heading values. The proposed method of using drones for detecting marine debris and matching it with longitude and latitude coordinates provides an effective solution to the problem of marine debris in blind spots.

Research on Pairwise Attention Reinforcement Model Using Feature Matching (특징 매칭을 이용한 페어와이즈 어텐션 강화 모델에 대한 연구)

  • Joon-Shik Lim;Yeong-Seok Ju
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.390-396
    • /
    • 2024
  • Vision Transformer (ViT) learns relationships between patches, but it may overlook important features such as color, texture, and boundaries, which can result in performance limitations in fields like medical imaging or facial recognition. To address this issue, this study proposes the Pairwise Attention Reinforcement (PAR) model. The PAR model takes both the training image and a reference image as input into the encoder, calculates the similarity between the two images, and matches the attention score maps of images with high similarity, reinforcing the matching areas of the training image. This process emphasizes important features between images and allows even subtle differences to be distinguished. In experiments using clock-drawing test data, the PAR model achieved a Precision of 0.9516, Recall of 0.8883, F1-Score of 0.9166, and an Accuracy of 92.93%. The proposed model showed a 12% performance improvement compared to API-Net, which uses the pairwise attention approach, and demonstrated a 2% performance improvement over the ViT model.

Design of Hybrid Parallel Architecture for Fast IP Lookups (고속 IP Lookup을 위한 병렬적인 하이브리드 구조의 설계)

  • 서대식;윤성철;오재석;강성호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.345-353
    • /
    • 2003
  • When designing network processors or implementing network equipments such as routers are implemented, IP lookup operations cause the major impact on their performance. As the organization of the IP address becomes simpler, the speed of the IP lookup operations can go faster. However, since the efficient management of IP address is inevitable due to the increasing number of network users, the address organization should become more complex. Therefore, for both IPv4(IP version 4) and IPv6(IP version 6), it is the essential fact that IP lookup operations are difficult and tedious. Lots of researcher for improving the performance of IP lookups have been presented, but the good solution has not been came out. Software approach alleviates the memory usage, but at the same time it si slow in terms of searching speed when performing an IP lookup. Hardware approach, on the other hand, is fast, however, it has disadvantages of producing hardware overheads and high memory usage. In this paper, conventional researches on IP lookups are shown and their advantages and disadvantages are explained. In addition, by mixing two representative structures, a new hybrid parallel architecture for fast IP lookups is proposed. The performance evaluation result shows that the proposed architecture provides better performance and lesser memory usage.

Bootstrap estimation of the standard error of treatment effect with double propensity score adjustment (이중 성향점수 보정 방법을 이용한 처리효과 추정치의 표준오차 추정: 붓스트랩의 적용)

  • Lim, So Jung;Jung, Inkyung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.453-462
    • /
    • 2017
  • Double propensity score adjustment is an analytic solution to address bias due to incomplete matching. However, it is difficult to estimate the standard error of the estimated treatment effect when using double propensity score adjustment. In this study, we propose two bootstrap methods to estimate the standard error. The first is a simple bootstrap method that involves drawing bootstrap samples from the matched sample using the propensity score as well as estimating the standard error from the bootstrapped samples. The second is a complex bootstrap method that draws bootstrap samples first from the original sample and then applies the propensity score matching to each bootstrapped sample. We examined the performances of the two methods using simulations under various scenarios. The estimates of standard error using the complex bootstrap were closer to the empirical standard error than those using the simple bootstrap. The simple bootstrap methods tended to underestimate. In addition, the coverage rates of a 95% confidence interval using the complex bootstrap were closer to the advertised rate of 0.95. We applied the two methods to a real data example and found also that the estimate of the standard error using the simple bootstrap was smaller than that using the complex bootstrap.