• Title/Summary/Keyword: additional bending stress

Search Result 60, Processing Time 0.026 seconds

A Design of 150 meters high steal tower (150m 철탑의 설계 I)

  • 이재숙
    • 전기의세계
    • /
    • v.17 no.3
    • /
    • pp.43-56
    • /
    • 1968
  • The design of this antenna tower on the publication had been prepared by writer in order to compare with that of towers for power transmission line or to show the differences on designs existing on their design standards. The design of this antenna tower is also featuring on the following points; (1) the height of tower is 150meters high, (2) combined steel angles are adopted besides angles, (3) the direction of 45degree wind is taken account into design, (4) the additional stresses of horizontal members located in the bending points of main posts are contemplated though these additional stressess are not shown on stress diagram.

  • PDF

Bending of a cracked functionally graded nanobeam

  • Akbas, Seref Doguscan
    • Advances in nano research
    • /
    • v.6 no.3
    • /
    • pp.219-242
    • /
    • 2018
  • In this study, static bending of an edge cracked cantilever nanobeam composed of functionally graded material (FGM) subjected to transversal point load at the free end of the beam is investigated based on modified couple stress theory. Material properties of the beam change in the height direction according to exponential distributions. The cracked nanobeam is modelled using a proper modification of the classical cracked-beam theory consisting of two sub-nanobeams connected through a massless elastic rotational spring. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Euler-Bernoulli beam theory by using finite element method. In order to establish the accuracy of the present formulation and results, the deflections are obtained, and compared with the published results available in the literature. Good agreement is observed. In the numerical study, the static deflections of the edge cracked FGM nanobeams are calculated and discussed for different crack positions, different lengths of the beam, different length scale parameter, different crack depths, and different material distributions. Also, the difference between the classical beam theory and modified couple stress theory is investigated for static bending of edge cracked FGM nanobeams. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

Fatigue analysis on the mooring chain of a spread moored FPSO considering the OPB and IPB

  • Kim, Yooil;Kim, Min-Suk;Park, Myong-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.178-201
    • /
    • 2019
  • The appropriate design of a mooring system to maintain the position of an offshore structure in deep sea under various environmental loads is important. Fatigue design of the mooring line considering OPB/IPB(out-of-plane bending/in-plane bending) became an essential factor after the incident of premature fatigue failure of the mooring chain due to OPB/IPB in the Girassol region in West Africa. In this study, mooring line fatigue analysis was performed considering the OPB/IPB of a spread moored FPSO in deep sea. The tension of the mooring line was derived by hydrodynamic analysis using the de-coupled analysis method. The floater motion time histories were calculated under the assumption that the mooring line behaves in quasi-static manner. Additional time domain analysis was carried out by prescribing the obtained motions on top of the selected critical mooring line, which was determined based on spectral fatigue analysis. In addition, nonlinear finite element analysis was performed considering the material nonlinearities, and both the interlink stiffness and stress concentration factors were derived. The fatigue damage to the chain surface was estimated by combining both the hydrodynamic and stress analysis results.

The Study for Reduction of Stress Concentration at the Stepped Shaft According to Two Types of External Force (하중 종류에 따른 다단축의 응력 집중 완화에 대한 연구)

  • Park, I.S.;Shim, J.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • In this study, Finite Element Analysis have been adopted to analyze reducing stress effect and used to induce the sensitivity of design parameter on various techniques which was used for reducing stress. And so it can be utilized as a data to design on similar model. The effect of reducing stress with respect to change of relief groove radius can be increased by 27.3~18.2 % more than radius of fillet. And if a shoulder fillet radius is larger, additional reducing stress by relief groove radius is not obtained. And there was only little effect on reducing stress by changing the center point of groove radius along horizontal direction. In the case that undercut radius is 1.5mm, Max. Equivalent stress is reduced by 5.71% under bending force and 11.11% under torsion. The best effect of reducing stress at undercut model was yielded when the undercut radius is a forth of difference of stepped shaft radius.

Fatigue Design of Various Type Spot Welded Lap Joints Using the Maximum Stress

  • Jung, Wonseok;Bae, Dongho;Sohn, Ilseon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.106-113
    • /
    • 2004
  • Recently, a new issue in designing spot welded structures such as automobile and train car bodies is to predict an economical fatigue design criterion. One of the most typical and traditional methods is to use a ΔP-N$\sub$f/ curve. However, since the fatigue data on the ΔP-N$\sub$f/ curve vary according to the welding conditions, materials, geometry of joint and fatigue loading conditions, it is necessary to perform the additional fatigue tests for determining a new fatigue design criterion of spot-welded lap joint having specific dimension and geometry. In this study, the stress distributions around spot welds of various spot welded lap joints such as in-plane bending type (IB type), tension shea. type (TS type) and cross tension type (CT type) were numerically analyzed. Using these results, the ΔP-N$\sub$f/ curves Previously obtained from the fatigue tests for each type were rearranged into the Δ$\sigma$-N$\sub$f/ relations with the maximum stresses at the nugget edge of the spot weld.

Influences of Bending Temperature on the I$_{c}$ Degradation Behavior of Bi-2223 tapes under Bending

  • Shin Hyung Seop;Dizon John Ryan C.;Katagiri Kazumune;Kuroda Tsuneo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.11-15
    • /
    • 2005
  • The I$_{c}$ degradation behavior of Bi-2223 tapes bent at RT and 77K were investigated using the bending device invented by Goldacker. Test results on fixing the tape at RT and 17K showed no difference. At 17K and RT bending, the critical strain was 0.67 and 0.50$\%$, respectively, for the VAM-l tape. For the AMSC tape, it was 0.94 and 0.88$\%$, respectively. These results show that there is additional residual stress in the superconducting filaments to be bent at 17K which shifts the formation of cracks into smaller bending radii. This was proved by computational analysis based on the mixture rule of composites. For the VAM-l tape, the Ie degradation behavior using the Goldacker type device shifted to higher strain levels at about 0.5$\%$, as compared with the FRP sample holders which have a critical bending strain of about 0.24$\%$. Also, for the externally reinforced AMSC tape, Ie degradation using the Goldacker type device begins at a higher strain level, at 0.88$\%$ as compared with using FRP sample holders, at 0.74$\%$. The difference between both cases can be explained by the tensile' and thermal stresses that the tapes were subjected to during fixing (soldering) when the FRP sample holders were used.

Study of the Distribution Properties and LRFD Code Conversion in Japanese Larch

  • Park, Chun-Young;Pang, Sung-Jun;Park, Ju-Sang;Kim, Kwang-Mo;Park, Mun-Jae;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.94-100
    • /
    • 2010
  • This study was performed to develop an LRFD (Load Resistance Factored Design) Code for Domestic Larch. To accomplish his, we evaluated bending, compression, tension and shear strength. The results of the strength evaluation were utilized to verify the distribution and code conversion. For bending, tension and compressive strength, the Weibull distribution was well-fitted, but for shear strength we observed a normal distribution. For evaluating the bending and compressive strength, a full-sized specimen was used. A small clear specimen was used to test tension and shear strength. Compressive strength in particular was found to be affected by tight knots, although there was little difference between grades. In the code conversion, the design value of the LRFD was larger than the existing allowable stress value in the Korean Building Code. However, the allowable stress in this study was about two times higher than the value listed in the Korean Building Code. This result induced the difference between the soft and hard conversions. For greater reliability, the accumulation of additional data is necessary and further studies should be performed

Characteristics of the stress on CWR for railway bridge design (교량설계를 위한 장대레일 축력 특성 분석)

  • Choi, Il-Yoon;Cho, Hyun-Cheol;Choi, Jin-Yu;Yang, Sin-Chu
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1395-1400
    • /
    • 2007
  • Characteristics of the stress on Continuous Welded Rail(CWR) were investigated to apply to design procedure for railway bridge design. Actions due to change in temperature, braking/traction and bending of the deck were considered in this interaction analysis between CWR and bridge deck. The bridge parameters such as static arrangement of the deck and support stiffness were taken into consideration to examine the influence of the parameters on the additional rail stress. The final results of this study, which include the displacement as well as the stress will be presented in the form of the design chart in future.

  • PDF

Two-plane Hull Girder Stress Monitoring System for Container Ship

  • Choi Jae-Woong;Kang Yun-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.17-25
    • /
    • 2004
  • Hull girder stress monitoring system for container ship uses four long-base-strain-gages at mid-ship to monitor the resultant stresses and the applied moment components of horizontal, vertical and torsional moments. The bending moments are estimated by using the conventional strain-moment relations, however, the torsional moment related to the warping strain requires the assumption of the shape of torsional moments over the hull girder. Though this shape could be a sine function with an adequate period, it largely depends upon certain empirical formulas. This paper introduces additional four long-base-strain-gages at mid-ship to derive the longitudinal slope of the warping strain because this slope is directly related to the torsional moment by Bi-moment concept. An open-channel-type cantilever beam has been selected as a simplified model for container ship and the result has proved that the suggested concepts can estimate the torsional component accurately. Finally this method can become reliable technique to derive all external moments in hull girder stress monitoring system for container ships.

Stability analysis of settled goaf with two-layer coal seams under building load-A case study in China

  • Yao, Lu;Ning, Jiang;Changxiang, Wang;Meng, Zhang;Dezhi, Kong;Haiyang, Pan
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.245-254
    • /
    • 2023
  • Through qualitative analysis and quantitative analysis, the contradictory conclusions about the stability of the settled goaf with two-layer coal seams subject to building load were obtained. Therefore, it is necessary to combine the additional stress method and numerical simulation to further analyze the foundation stability. Through borehole analysis and empirical formula analogy, the height of water-conducting fracture zone in No.4 coal and No.9 coal were obtained, providing the calculation range of water-conducting fracture zone for numerical simulation. To ensure the accuracy of the elastic modulus of broken gangue, the stress-strain curve were obtained by broken gangue compression test in dried state of No.4 coal seam and in soaking state of No.9 coal seam. To ensure the rationality of the numerical simulation results, the actual measured subsidence data were retrieved by numerical simulation. FISH language was used to analyze the maximum building load on the surface and determine the influence depth of building load on the foundation. The critical building load was 0.16 MPa of No.4 settled goaf and was 1.6 MPa of No.9 settled goaf. The additional stress affected the water-conducting fracture zone obviously, resulted in the subsidence of water-conducting fracture zone was greater than that of bending subsidence zone. In this paper, the additional stress method was analyzed by numerical simulation method, which can provide a new analysis method for the treatment and utilization of the settled goaf.