• 제목/요약/키워드: adaptive-mesh method

검색결과 161건 처리시간 0.019초

Mesh Simplification and Adaptive LOD for Finite Element Mesh Generation

  • Date, Hiroaki;Kanai, Satoshi;Kishinami, Takeshi;Nishigaki, Ichiro
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.73-79
    • /
    • 2006
  • In this paper, we propose a new triangular finite element mesh generation method based on simplification of high-density mesh and adaptive Level-of-Detail (LOD) methods for efficient CAE. In our method, mesh simplification is used to control the mesh properties required for FE mesh, such as the number of triangular elements, element shape quality and size while keeping the specified approximation tolerance. Adaptive LOD methods based on vertex hierarchy according to curvature and region of interest, and global LOD method preserving density distributions are also proposed in order to construct a mesh more appropriate for CAE purpose. These methods enable efficient generation of FE meshes with properties appropriate for analysis purpose from a high-density mesh. Finally, the effectiveness of our approach is shown through evaluations of the FE meshes for practical use.

Dynamically Adaptive Finite Element Mesh Generation Schemes

  • Yoon, Chong-Yul;Park, Joon-Seok
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.659-665
    • /
    • 2010
  • The finite element method(FEM) is proven to be an effective approximate method of structural analysis if proper element types and meshes are chosen, and recently, the method is often applied to solve complex dynamic and nonlinear problems. A properly chosen element type and mesh yields reliable results for dynamic finite element structural analysis. However, dynamic behavior of a structure may include unpredictably large strains in some parts of the structure, and using the initial mesh throughout the duration of a dynamic analysis may include some elements to go through strains beyond the elements' reliable limits. Thus, the finite element mesh for a dynamic analysis must be dynamically adaptive, and considering the rapid process of analysis in real time, the dynamically adaptive finite element mesh generating schemes must be computationally efficient. In this paper, a computationally efficient dynamically adaptive finite element mesh generation scheme for dynamic analyses of structures is described. The concept of representative strain value is used for error estimates and the refinements of meshes use combinations of the h-method(node movement) and the r-method(element division). The shape coefficient for element mesh is used to correct overly distorted elements. The validity of the scheme is shown through a cantilever beam example under a concentrated load with varying values. The example shows reasonable accuracy and efficient computing time. Furthermore, the study shows the potential for the scheme's effective use in complex structural dynamic problems such as those under seismic or erratic wind loads.

Advancing Front Method를 이용한 대변형 쉘 구조물의 적응적 유한요소 자동생성법 (Adaptive Mesh Generation in Large Deformation Analysis of Shell Structures with Advancing Front Method)

  • 장창두;정진우;문성춘
    • 한국전산구조공학회논문집
    • /
    • 제12권3호
    • /
    • pp.447-455
    • /
    • 1999
  • 본 연구에서는 대변형 쉘 구조물에 효과적인 적응적 유한요소 자동생성 기법을 제안한다. 사후 오차평가에 기초하여 기하학적 비선형 해석시 각 하중 단계에서의 요소 재생성에 초점을 맞추고 있다. 응력오차로부터 얻어진 요소크기 함수로 등고선을 구성하고, 요소 재생성 기법으로 advancing front method의 일종인 패이빙법(paving method)을 이용하여 적응적 요소 자동생성을 수행한 결과, 그 유용성을 확인하였다.

  • PDF

MRI Content-Adaptive Finite Element Mesh Generation Toolbox

  • Lee W.H.;Kim T.S.;Cho M.H.;Lee S.Y.
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권3호
    • /
    • pp.110-116
    • /
    • 2006
  • Finite element method (FEM) provides several advantages over other numerical methods such as boundary element method, since it allows truly volumetric analysis and incorporation of realistic electrical conductivity values. Finite element mesh generation is the first requirement in such in FEM to represent the volumetric domain of interest with numerous finite elements accurately. However, conventional mesh generators and approaches offered by commercial packages do not generate meshes that are content-adaptive to the contents of given images. In this paper, we present software that has been implemented to generate content-adaptive finite element meshes (cMESHes) based on the contents of MR images. The software offers various computational tools for cMESH generation from multi-slice MR images. The software named as the Content-adaptive FE Mesh Generation Toolbox runs under the commercially available technical computation software called Matlab. The major routines in the toolbox include anisotropic filtering of MR images, feature map generation, content-adaptive node generation, Delaunay tessellation, and MRI segmentation for the head conductivity modeling. The presented tools should be useful to researchers who wish to generate efficient mesh models from a set of MR images. The toolbox is available upon request made to the Functional and Metabolic Imaging Center or Bio-imaging Laboratory at Kyung Hee University in Korea.

요소의 대표 변형률 값에 근거한 에러평가를 이용한 평면응력문제의 적응적 요소망 형성 (Adaptive mesh generation for plane stress problems using error based on element′s representative strain value)

  • 정요찬;윤종열;홍승표
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.403-409
    • /
    • 2003
  • The finite element method is one of the most widely used method of structural analysis that has wide applications in diverse fields of engineering and science. The method has been proven effective and reliable in many practical problems. One of the reasons for the methods' popularity is its ease of use, but still the user has to input the finite element mesh which affects the accuracy of the results. The knowledge required to form an effective mesh for a given problem is somewhat complex and for sometime there has been research effort to automate the generation of the mesh and this is called the adaptive mesh generation scheme. A good adaptive mesh scheme seemed to require an accurate assessment of error and generally this requires some additional computation. This paper looks into the possibility of generating adaptive meshes based on representative strain values in each finite element method. The proposed adaptive scheme does not require additional computations other that looking up the data values already computed as finite element analysis results and simple manipulations of these data. Two plane stress problems, a plate with a hole and a deep beam with a concentrated load at the end are considered to show the progress of the improved generation of adaptive meshes using the scheme.

  • PDF

AN ADAPTIVE MULTIGRID TECHNIQUE FOR OPTION PRICING UNDER THE BLACK-SCHOLES MODEL

  • Jeong, Darae;Li, Yibao;Choi, Yongho;Moon, Kyoung-Sook;Kim, Junseok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권4호
    • /
    • pp.295-306
    • /
    • 2013
  • In this paper, we consider the adaptive multigrid method for solving the Black-Scholes equation to improve the efficiency of the option pricing. Adaptive meshing is generally regarded as an indispensable tool because of reduction of the computational costs. The Black-Scholes equation is discretized using a Crank-Nicolson scheme on block-structured adaptively refined rectangular meshes. And the resulting discrete equations are solved by a fast solver such as a multigrid method. Numerical simulations are performed to confirm the efficiency of the adaptive multigrid technique. In particular, through the comparison of computational results on adaptively refined mesh and uniform mesh, we show that adaptively refined mesh solver is superior to a standard method.

실시간 종이 구김 시뮬레이션을 위한 적응적 메쉬 구조 (Adaptive Mesh Structure for Realtime Paper Crumple Simulation)

  • 강영민
    • 한국게임학회 논문지
    • /
    • 제9권4호
    • /
    • pp.97-106
    • /
    • 2009
  • 본 논문은 적응적 메쉬 구조를 이용하여 가상 종이 객체를 실시간에 시뮬레이션 하는 방법을 제안한다. 제안된 기법은 임의의 삼각 메쉬에 적용될 수 있으며, 안정적인 수치 적분과 변형 기반 메쉬 세분화를 이용하여 효율적으로 종이 표면의 주름과 구김을 생성한다. 종이 객체의 구겨짐을 사실적으로 표현하기 위하여 부러지는 스프링을 가진 적응적 메쉬 구조를 사용한다. 적응적 구조가 지속적으로 질점을 삽입 혹은 삭제하기 때문에, 질량과 운동량의 보존이 고려되어야만 사실적인 종이 시뮬레이션이 가능하다. 제안된 기법은 실시간 환경에서 종이와 같이 얇은 쉘 구조의 사실적인 애니메이션을 생성한다.

  • PDF

변형해석을 위한 적응적 세분화방법에 기초한 무요소법 (A meshfree method based on adaptive refinement method and its application for deformation analysis)

  • 한규택
    • Design & Manufacturing
    • /
    • 제7권1호
    • /
    • pp.34-39
    • /
    • 2013
  • The finite element method(FEM) presents some limitations when the mesh becomes highly distorted. For analysis of metal forming processes with large deformation, the conventional finite element method usually requires several remeshing operations due to severe mesh distortion. The new computational method developed in the recent years, usually designated by meshfree method, offers an attractive approach to avoid those time-consuming remeshing efforts. This new method uses a set of points to represent the problem domain with no need of an additional mesh. Also this new generation of computational method provides a higher rate of convergence than that of the conventional finite element methods. One of the promising applications of meshfree methods is the adaptive refinement for problems having multi-scale nature. In this study, an adaptive node generation procedure is proposed and also to illustrate the efficiency of proposed method, several numerical examples are presented.

  • PDF

정자력 계산을 위한 적응 유한 요소법 (An Adaptive Finite Element Method for Magnetostatic Force Computations)

  • 박용규;박일한;정형석;정현교;이기식;한송엽
    • 대한전기학회논문지
    • /
    • 제38권2호
    • /
    • pp.100-105
    • /
    • 1989
  • This paper presents an adaptive finite element method for magnetostatic force computation using Maxwell's stress tensor. Mesh refinements are performed automatically by interelement magnetic field intensity discontinuity errors and element force errors. In initial mesh, the computed forces for different integration paths give great differences, but converge to a certain value as mesh division is performed by the adaptive scheme, We obtained good agreement between analytic solutions and numerical values in typical examples.

  • PDF

격자압축을 이용해 구성된 격자의 효과적인 격자유연화 방법 (An Effective mesh smoothing technique for the mesh constructed by the mesh compression technique)

  • 홍진태;이석렬;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.331-334
    • /
    • 2003
  • In the finite element simulation of hot forging processes using hexahedron, remeshing of a flash is very difficult. The mesh compression method is a remeshing technique to construct an effective hexahedral mesh. However, because mesh is distorted during the compression procedure or the mesh compression method, mesh smoothing is necessary to improve the mesh Qualify. in this study, several geometric mesh smoothing techniques and a matrix norm optimization technique are applied and compared which is more adaptive to the mesh compression method.

  • PDF