• 제목/요약/키워드: adaptive sliding mode control

검색결과 245건 처리시간 0.034초

ADAPTIVE SLICING ODE CONTROL USING FUZZY LOGIC SYSTEM

  • Yoo, Byungkook;Jeoung, Sacheul;Ham, Woonchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.26-30
    • /
    • 1995
  • In this study, the fuzzy approximator and sliding mode control (SMC) scheme are considered. An adaptive sliding mode control is proposed based on the SMC theory. This proposed control scheme is that a adaptive law is utilized to approximate the unknown function f by fuzzy logic system in designing the sliding mode controller for the nonlinear system. In order to reduce the approximation errors, the differences of nonlinear function and fuzzy approximator, an adaptive law is also intoduced and the stability of proposed control scheme are proven with simple adaptive law and roburst adaptive law. This proposed control scheme is applied to a single link robot arm.

  • PDF

조립용 로봇의 가변구조 적응제어 (Variable Structure Adaptive Control of Assembling Robot)

  • 한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.131-136
    • /
    • 1997
  • This paper represent the variable structure adaptive mode control technique which is new approach to implement the robust control of industrial robot manipulator with external disturbances and parameter uncertainties. Sliding mode control is a well-known technique for robust control of uncertain nonlinear systems. The robustness of sliding model controllers can be shown in contiuous time, but digital implementation may not preserve robustness properties because the sampling process limits the existence of a true sliding mode. the sampling process often forces the trajectory to oscillate in the neighborhood of the sliding surface. Adaptive control technique is particularly well-suited to robot manipulators where dynamic model is highly complex and may contain unknown parameters. Adaptive control algorithm is designed by using the principle of the model reference adaptive control method based upon the hyperstability theory. The proposed control scheme has a simple sturcture is computationally fast and does not require knowledge of the complex dynamic model or the parameter values of the manipulator or the payload. Simulation results show that the proposed method not only improves the performance of the system but also reduces the chattering problem of sliding mode control, Consequently, it is expected that the new adaptive sliding mode control algorithm will be suited for various practical applications of industrial robot control system.

  • PDF

일차원 퍼지 규칙 슬라이딩 평면을 이용한 터미널 슬라이딩 모드 제어 (Terminal Sliding Mode Control Using One Dimensional Fuzzy Rule Type Sliding Surfaces)

  • 서삼준
    • 한국지능시스템학회논문지
    • /
    • 제26권5호
    • /
    • pp.402-408
    • /
    • 2016
  • 본 논문에서는 퍼지 슬라이딩 평면의 개념을 터미널 슬라이딩 평면의 기울기를 선정하는데 적용한 일차원 퍼지규칙 슬라이딩 평면을 이용한 터미널 슬라이딩 제어기를 제안하였다. 터미널 슬라이딩 모드 제어기의 개념을 확장하여 연속인 도달법칙을 가지는 터미널 슬라이딩 모드 제어 입력을 제안하였다. 컴퓨터 모의실험에서 제안한 제어기는 터미널 슬라이딩 모드 제어기 보다 빠른 수렴 특성과 채터링이 발생하지 않는 특성을 보여주었으며 일차원 퍼지 규칙을 사용하여 계산량이 작다는 장점을 가지고 있다.

Adaptive fuzzy sliding mode control of seismically excited structures

  • Ghaffarzadeh, Hosein;Aghabalaei, Keyvan
    • Smart Structures and Systems
    • /
    • 제19권5호
    • /
    • pp.577-585
    • /
    • 2017
  • In this paper, an adaptive fuzzy sliding mode controller (AFSMC) is designed to reduce dynamic responses of seismically excited structures. In the conventional sliding mode control (SMC), direct implementation of switching-type control law leads to chattering phenomenon which may excite unmodeled high frequency dynamics and may cause vibration in control force. Attenuation of chattering and its harmful effects are done by using fuzzy controller to approximate discontinuous part of the sliding mode control law. In order to prevent time-consuming obtaining of membership functions and reduce complexity of the fuzzy rule bases, adaptive law based on Lyapunov function is designed. To demonstrate the performance of AFSMC method and to compare with that of SMC and fuzzy control, a linear three-story scaled building is investigated for numerical simulation based on the proposed method. The results indicate satisfactory performance of the proposed method superior to those of SMC and fuzzy control.

적응 슬라이딩 모드 관측기를 이용한 영구자석 동기전동기의 센서리스 속도제어 (Sensorless Speed Control of PMSM using an Adaptive Sliding Mode Observer)

  • 한윤석;김영석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권2호
    • /
    • pp.83-91
    • /
    • 2002
  • This paper presents a new speed and position sensorless control method of permanent magnet synchronous motors based on the sliding mode observer. Since the parameter of the dynamic equation such as machine inertia or viscosity friction coefficient are not well known and these values can be easily changed generally during normal operation, there are many restrictions in the actual implementation. The proposed adaptive sliding mode observer applies adaptive scheme so that observer may overcome the problem caused by using the dynamic equation. Furthermore, using the Lyapunov Function, the adaptive sliding mode observer can estimate rotor speed as well as stator resistance. The feasibility of the Proposed observer is verified cia the experiments.

Adaptive Approaches on the Sliding Mode Control of Robot Manipulators

  • Park, Jae-Sam;Han, Gueon-San;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.15-20
    • /
    • 2001
  • In this paper, adaptive algorithms on the sliding model control for robust tracking control of robust manipulators are presented. The presented algorithms use adaption laws for tuning both the sliding mode gain and the thickness of the boundary layer to reject a disconitnuous control input, and to improve the tracking performance. It is shown that the robustness of the developed adaptive algorithms are guaranteed by the sliding mode control law and that the algorithms are globally convergent in the presence of disturbances and modeling uncertainties. Computer simulations are performed for a two-link manipulator, and the results show good properties of the proposed adaptive algorithms under large mainpulator parameter uncertainties and disturbances.

  • PDF

적응PID 슬라이딩 모드 제어기법을 적용한 EHA 시스템의 위치제어 (A Position Control of EHA Systems using Adaptive PID Sliding Mode Control Scheme)

  • 이지민;박성환;박민규;김종식
    • 동력기계공학회지
    • /
    • 제17권4호
    • /
    • pp.120-130
    • /
    • 2013
  • An adaptive PID sliding mode controller is proposed for the position control of electro-hydrostatic actuator(EHA) systems with system uncertainties and saturation in the motor. An EHA prototype is developed and system modeling and parameter identification are executed. Then, adaptive PID sliding mode controller and optimal anti-windup PID controller are designed and the performance and robustness of the two control systems are compared by experiment. It was found that the adaptive PID sliding mode control system has better performance and is more robust to system uncertainties than the optimal anti-windup PID control system.

가변속 풍력 발전용 영구자석형 동기발전기의 적응 슬라이딩 모드 제어기 설계 (Adaptive Sliding Mode Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System)

  • 김성수;최한호
    • 제어로봇시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.315-319
    • /
    • 2016
  • This paper proposes a simple adaptive sliding mode control algorithm for controlling a permanent magnet synchronous generator (PMSG) of a MW-class direct-driven wind turbine system. The proposed adaptive sliding mode controller does not require accurate knowledge of the PMSG parameter or turbine torque values. The proposed controller can accurately track the reference angular speed computed by the maximum power point tracking(MPPT) algorithm. Finally, this paper gives Matlab/Simulink simulation results to verify the practicality and effectiveness of the proposed adaptive sliding mode controller.

적응 슬라이딩 관측기를 이용한 매입형 영구자석 동기전동기의 센서리스 속도제어 (Sensorless Speed Control of IPMSM using an Adaptive Sliding mode Observer)

  • 강형석;김원석;김영석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권5호
    • /
    • pp.271-279
    • /
    • 2006
  • In this paper, a new speed sensorless control based on an adaptive sliding mode observer is proposed lot the interior permanent magnet synchronous motor(IPMSM) drives. With using voltage equation only, the adaptive sliding mode observer was investigated. Since the parameter of the dynamic equation such as machine inertia or viscosity friction coefficient are not well known and these values can be easily changed during normal operation, there are many restrictions in the actual implementation. The proposed adaptive sliding mode observer applied to overcome the problem caused by using the dynamic equation. Furthermore, the Lyapunov function is used to prove the system stability included speed estimate and speed control. The effectiveness of the proposed algorithm is confirmed by the experiments.

Modified adaptive complementary sliding mode control for the longitudinal motion stabilization of the fully-submerged hydrofoil craft

  • Liu, Sheng;Niu, Hongmin;Zhang, Lanyong;Xu, Changkui
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.584-596
    • /
    • 2019
  • This paper presents a Modified Adaptive Complementary Sliding Mode Control (MACSMC) system for the longitudinal motion control of the Fully-Submerged Hydrofoil Craft (FSHC) in the presence of time varying disturbance and uncertain perturbations. The nonlinear disturbance observer is designed with less conservatism that only boundedness of the derivative of the disturbance is required. Then, a complementary sliding mode control system combined with adaptive law is designed to reduce the bound of stabilization error with fast convergence. In particularly, the modified complementary sliding mode surface which contains the estimation of the disturbance can reduce the switching gain and retain the normal performance of the system. Moreover, a hyperbolic tangent function contained in the control law is utilized to attenuate the chattering of the actuator. The global asymptotic stability of the closed-loop system is demonstrated utilizing the Lyapunov stability theory. Ultimately, the simulation results show the effectiveness of the proposed approach.