• Title/Summary/Keyword: adaptive rejection Metropolis sampling

Search Result 3, Processing Time 0.021 seconds

Bayesian Parameter Estimation of the Four-Parameter Gamma Distribution

  • Oh, Mi-Ra;Kim, Kyung-Sook;Cho, Wan-Hyun;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.255-266
    • /
    • 2007
  • A Bayesian estimation of the four-parameter gamma distribution is considered under the noninformative prior. The Bayesian estimators are obtained by the Gibbs sampling. The generation of the shape/power parameter and the power parameter in the Gibbs sampler is implemented using the adaptive rejection sampling algorithm of Gilks and Wild (1992). Also, the location parameter is generated using the adaptive rejection Metropolis sampling algorithm of Gilks, Best and Tan (1995). Finally, the simulation result is presented.

Bayesian Estimation of the Two-Parameter Kappa Distribution

  • Oh, Mi-Ra;Kim, Sun-Worl;Park, Jeong-Soo;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.355-363
    • /
    • 2007
  • In this paper a Bayesian estimation of the two-parameter kappa distribution was discussed under the noninformative prior. The Bayesian estimators are obtained by the Gibbs sampling. The generation of the shape parameter and scale parameter in the Gibbs sampler is implemented using the adaptive rejection Metropolis sampling algorithm of Gilks et al. (1995). A Monte Carlo study showed that the Bayesian estimators proposed outperform other estimators in the sense of mean squared error.

PRICE ESTIMATION VIA BAYESIAN FILTERING AND OPTIMAL BID-ASK PRICES FOR MARKET MAKERS

  • Hyungbin Park;Junsu Park
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.5
    • /
    • pp.875-898
    • /
    • 2024
  • This study estimates the true price of an asset and finds the optimal bid/ask prices for market makers. We provide a novel state-space model based on the exponential Ornstein-Uhlenbeck volatility and the Heston models with Gaussian noise, where the traded price and volume are available, but the true price is not observable. An objective of this study is to use Bayesian filtering to estimate the posterior distribution of the true price, given the traded price and volume. Because the posterior density is intractable, we employ the guided particle filtering algorithm, with which adaptive rejection metropolis sampling is used to generate samples from the density function of an unknown distribution. Given a simulated sample path, the posterior expectation of the true price outperforms the traded price in estimating the true price in terms of both the mean absolute error and root-mean-square error metrics. Another objective is to determine the optimal bid/ask prices for a market maker. The profit-and-loss of the market maker is the difference between the true price and its bid/ask prices multiplied by the traded volume or bid/ask size of the market maker. The market maker maximizes the expected utility of the PnL under the posterior distribution. We numerically calculate the optimal bid/ask prices using the Monte Carlo method, finding that its spread widens as the market maker becomes more risk-averse, and the bid/ask size and the level of uncertainty increase.