• Title/Summary/Keyword: adaptive model selection

Search Result 101, Processing Time 0.021 seconds

VM Scheduling for Efficient Dynamically Migrated Virtual Machines (VMS-EDMVM) in Cloud Computing Environment

  • Supreeth, S.;Patil, Kirankumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1892-1912
    • /
    • 2022
  • With the massive demand and growth of cloud computing, virtualization plays an important role in providing services to end-users efficiently. However, with the increase in services over Cloud Computing, it is becoming more challenging to manage and run multiple Virtual Machines (VMs) in Cloud Computing because of excessive power consumption. It is thus important to overcome these challenges by adopting an efficient technique to manage and monitor the status of VMs in a cloud environment. Reduction of power/energy consumption can be done by managing VMs more effectively in the datacenters of the cloud environment by switching between the active and inactive states of a VM. As a result, energy consumption reduces carbon emissions, leading to green cloud computing. The proposed Efficient Dynamic VM Scheduling approach minimizes Service Level Agreement (SLA) violations and manages VM migration by lowering the energy consumption effectively along with the balanced load. In the proposed work, VM Scheduling for Efficient Dynamically Migrated VM (VMS-EDMVM) approach first detects the over-utilized host using the Modified Weighted Linear Regression (MWLR) algorithm and along with the dynamic utilization model for an underutilized host. Maximum Power Reduction and Reduced Time (MPRRT) approach has been developed for the VM selection followed by a two-phase Best-Fit CPU, BW (BFCB) VM Scheduling mechanism which is simulated in CloudSim based on the adaptive utilization threshold base. The proposed work achieved a Power consumption of 108.45 kWh, and the total SLA violation was 0.1%. The VM migration count was reduced to 2,202 times, revealing better performance as compared to other methods mentioned in this paper.

Implementation of the Agent using Universal On-line Q-learning by Balancing Exploration and Exploitation in Reinforcement Learning (강화 학습에서의 탐색과 이용의 균형을 통한 범용적 온라인 Q-학습이 적용된 에이전트의 구현)

  • 박찬건;양성봉
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.672-680
    • /
    • 2003
  • A shopbot is a software agent whose goal is to maximize buyer´s satisfaction through automatically gathering the price and quality information of goods as well as the services from on-line sellers. In the response to shopbots´ activities, sellers on the Internet need the agents called pricebots that can help them maximize their own profits. In this paper we adopts Q-learning, one of the model-free reinforcement learning methods as a price-setting algorithm of pricebots. A Q-learned agent increases profitability and eliminates the cyclic price wars when compared with the agents using the myoptimal (myopically optimal) pricing strategy Q-teaming needs to select a sequence of state-action fairs for the convergence of Q-teaming. When the uniform random method in selecting state-action pairs is used, the number of accesses to the Q-tables to obtain the optimal Q-values is quite large. Therefore, it is not appropriate for universal on-line learning in a real world environment. This phenomenon occurs because the uniform random selection reflects the uncertainty of exploitation for the optimal policy. In this paper, we propose a Mixed Nonstationary Policy (MNP), which consists of both the auxiliary Markov process and the original Markov process. MNP tries to keep balance of exploration and exploitation in reinforcement learning. Our experiment results show that the Q-learning agent using MNP converges to the optimal Q-values about 2.6 time faster than the uniform random selection on the average.

Adaptive Changes in the Grain-size of Word Recognition (단어재인에 있어서 처리단위의 적응적 변화)

  • Lee, Chang H.
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2002.05a
    • /
    • pp.111-116
    • /
    • 2002
  • The regularity effect for printed word recognition and naming depends on ambiguities between single letters (small grain-size) and their phonemic values. As a given word is repeated and becomes more familiar, letter-aggregate size (grain-size) is predicted to increase, thereby decreasing the ambiguity between spelling pattern and phonological representation and, therefore, decreasing the regularity effect. Lexical decision and naming tasks studied the effect of repetition on the regularity effect for words. The familiarity of a word from was manipulated by presenting low and high frequency words as well as by presenting half the stimuli in mixed upper- and lowercase letters (an unfamiliar form) and half in uniform case. In lexical decision, the regularity effect was initially strong for low frequency words but became null after two presentations; in naming it was also initially strong but was merely reduced (although still substantial) after three repetitions. Mixed case words were recognized and named more slowly and tended to show stronger regularity effects. The results were consistent with the primary hypothesis that familiar word forms are read faster because they are processed at a larger grain-size, which requires fewer operations to achieve lexical selection. Results are discussed in terms of a neurobiological model of word recognition based on brain imaging studies.

  • PDF

Motivation-based Hierarchical Behavior Planning

  • Song, Wei;Cho, Kyung-Eun;Um, Ky-Hyun
    • Journal of Korea Game Society
    • /
    • v.8 no.1
    • /
    • pp.79-90
    • /
    • 2008
  • This paper describes a motivation-based hierarchical behavior planning framework to allow autonomous agents to select adaptive actions in simulation game environments. The combined behavior planning system is formed by four levels of specification, which are motivation extraction, goal list generation, action list determination and optimization. Our model increases the complexity of virtual human behavior planning by adding motivation with sudden and cumulative attributes. The motivation selection by probability distribution allows NPC to make multiple decisions in certain situations in order to embody realistic virtual humans. Hierarchical goal tree enhances the effective reactivity. Optimizing for potential actions provides NPC with safe and satisfying actions to adapt to the virtual environment. A restaurant simulation game was used to elucidate the mechanism of the framework.

  • PDF

A Study on the Development of "Bufo gargarizans" Habitat Suitability Index(HSI) (두꺼비 서식지 적합성 지수(HSI) 모델개발을 위한 연구)

  • Cho, Gun-Young;Koo, Bon-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.2
    • /
    • pp.23-38
    • /
    • 2022
  • This study investigates the characteristics and physical habitat requirements for each Bufo gargarizans life history through a literature survey. After deriving variables for each component of Bufo gargarizans, in order to reduce regional deviations from eight previously studied literature research areas for deriving the criteria for variables, a total of 12 natural habitats of Bufo gargarizanss are selected as spatial ranges by selecting four additional sites such as Umyeonsan Ecological Park in Seoul, Wonheungibangjuk in Cheongju in the central region, Changnyeong Isan Reservoir in the southern region, and Mangwonji in Daegu. This study presents Bufo gargarizans SI, a species endemic to Korea, whose population is rapidly declining due to large-scale housing site development and road development, and develops a Bufo gargarizans HSI model accordingly to improve the function of the damaged Bufo gargarizans habitat and to present an objective basis for site selection of alternative habitat. At the same time, it provides basic data for adaptive management and follow-up monitoring. The three basic habitat requirements of amphibians, the physical habitat requirements of Bufo gargarizans, synthesized with shelter, food, and water, and the characteristics of each life history, are classified into five components by adding space and threats through literature research and expert advice. Variables are proposed by synthesizing and comparing the general characteristics of amphibians, among the previously studied single species of amphibians, the components of HSI of goldfrogs and Bufo gargarizans, and the ecological and physical environmental characteristics of Bufo gargarizans. Afterwards, through consultation with an amphibian expert, a total of 10 variables are finally presented by adjacent forest area(ha), the distance between spawning area and the nearest forest land(m), the soil, the distance from the wetland(m), the forest layered structure, the low grassland space, the permanent wetland area(ha), shoreline slope(%), PH, presence of predators, distance from road(m), presence or absence of obstacles. n order to derive the final criteria for each of the 10 variables, the criteria(alternative) for each variable are presented through geographic information analysis of the site survey area and field surveys of the previously studied literature research area. After a focus group interview(FGI) of 30 people related to the Bufo gargarizans colony in Cheongju, a questionnaire and in-depth interviews with three amphibians experts are conducted to verify and supplement the criteria for each final variable. Based on the finally developed Bufo gargarizans HSI, the Bufo gargarizans habitat model is presented through the SI graph model and the drawing centering on the Bufo gargarizans spawning area

Effective Adversarial Training by Adaptive Selection of Loss Function in Federated Learning (연합학습에서의 손실함수의 적응적 선택을 통한 효과적인 적대적 학습)

  • Suchul Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.1-9
    • /
    • 2024
  • Although federated learning is designed to be safer than centralized methods in terms of security and privacy, it still has many vulnerabilities. An attacker performing an adversarial attack intentionally manipulates the deep learning model by injecting carefully crafted input data, that is, adversarial examples, into the client's training data to induce misclassification. A common defense strategy against this is so-called adversarial training, which involves preemptively learning the characteristics of adversarial examples into the model. Existing research assumes a scenario where all clients are under adversarial attack, but considering the number of clients in federated learning is very large, this is far from reality. In this paper, we experimentally examine aspects of adversarial training in a scenario where some of the clients are under attack. Through experiments, we found that there is a trade-off relationship in which the classification accuracy for normal samples decreases as the classification accuracy for adversarial examples increases. In order to effectively utilize this trade-off relationship, we present a method to perform adversarial training by adaptively selecting a loss function depending on whether the client is attacked.

The YIQ Model of Computed Tomography Color Image Variable Block with Fractal Image Coding (전산화단층촬영 칼라영상의 YIQ모델을 가변블록 이용한 프랙탈 영상 부호화)

  • Park, Jae-Hong;Park, Cheol-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.263-270
    • /
    • 2016
  • This paper suggests techniques to enhance coding time which is a problem in traditional fractal compression and to improve fidelity of reconstructed images by determining fractal coefficient through adaptive selection of block approximation formula. First, to reduce coding time, we construct a linear list of domain blocks of which characteristics is given by their luminance and variance and then we control block searching time according to the first permissible threshold value. Next, when employing three-level block partition, if a range block of minimum partition level cannot find a domain block which has a satisfying approximation error, There applied to 24-bpp color image compression and image techniques. The result did not occur a loss in the image quality of the image when using the encoding method, such as almost to the color in the YIQ image compression rate and image quality, such as RGB images and showed good.

A Study on Hand-signal Recognition System in 3-dimensional Space (3차원 공간상의 수신호 인식 시스템에 대한 연구)

  • 장효영;김대진;김정배;변증남
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.103-114
    • /
    • 2004
  • This paper deals with a system that is capable of recognizing hand-signals in 3-dimensional space. The system uses 2 color cameras as input devices. Vision-based gesture recognition system is known to be user-friendly because of its contact-free characteristic. But as with other applications using a camera as an input device, there are difficulties under complex background and varying illumination. In order to detect hand region robustly from a input image under various conditions without any special gloves or markers, the paper uses previous position information and adaptive hand color model. The paper defines a hand-signal as a combination of two basic elements such as 'hand pose' and 'hand trajectory'. As an extensive classification method for hand pose, the paper proposes 2-stage classification method by using 'small group concept'. Also, the paper suggests a complementary feature selection method from images from two color cameras. We verified our method with a hand-signal application to our driving simulator.

Classifying the severity of pedestrian accidents using ensemble machine learning algorithms: A case study of Daejeon City (앙상블 학습기법을 활용한 보행자 교통사고 심각도 분류: 대전시 사례를 중심으로)

  • Kang, Heungsik;Noh, Myounggyu
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.39-46
    • /
    • 2022
  • As the link between traffic accidents and social and economic losses has been confirmed, there is a growing interest in developing safety policies based on crash data and a need for countermeasures to reduce severe crash outcomes such as severe injuries and fatalities. In this study, we select Daejeon city where the relative proportion of fatal crashes is high, as a case study region and focus on the severity of pedestrian crashes. After a series of data manipulation process, we run machine learning algorithms for the optimal model selection and variable identification. Of nine algorithms applied, AdaBoost and Random Forest (ensemble based ones) outperform others in terms of performance metrics. Based on the results, we identify major influential factors (i.e., the age of pedestrian as 70s or 20s, pedestrian crossing) on pedestrian crashes in Daejeon, and suggest them as measures for reducing severe outcomes.

Augmented Multiple Regression Algorithm for Accurate Estimation of Localized Solar Irradiance (국지적 일사량 산출 정확도 향상을 위한 다중회귀 증강 알고리즘)

  • Choi, Ji Nyeong;Lee, Sanghee;Ahn, Ki-Beom;Kim, Sug-Whan;Kim, Jinho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1435-1447
    • /
    • 2020
  • The seasonal variations in weather parameters can significantly affect the atmospheric transmission characteristics. Herein, we propose a novel augmented multiple regression algorithm for the accurate estimation of atmospheric transmittance and solar irradiance over highly localized areas. The algorithm employs 1) adaptive atmospheric model selection using measured meteorological data and 2) multiple linear regression computation augmented with the conventional application of MODerate resolution atmospheric TRANsmission (MODTRAN). In this study, the proposed algorithm was employed to estimate the solar irradiance over Taean coastal area using the 2018 clear days' meteorological data of the area, and the results were compared with the measurement data. The difference between the measured and computed solar irradiance significantly improved from 89.27 ± 48.08σ W/㎡ (with standard MODTRAN) to 21.35 ± 16.54σ W/㎡ (with augmented multiple regression algorithm). The novel method proposed herein can be a useful tool for the accurate estimation of solar irradiance and atmospheric transmission characteristics of highly localized areas with various weather conditions; it can also be used to correct remotely sensed atmospheric data of such areas.