With recent development of high-speed wide-area wireless networks and wide spread of highperformance wireless devices, the demand on seamless video streaming services in Long Term Evolution (LTE) network environments is ever increasing. To meet the demand and provide enhanced Quality of Experience (QoE) with mobile users, the Dynamic Adaptive Streaming over HTTP (DASH) has been actively studied to achieve QoE enhanced video streaming service in dynamic network environments. However, the existing DASH algorithm to select the quality of requesting video segments is based on a procedural algorithm so that it reveals a limitation to adapt its performance to dynamic network situations. To overcome this limitation this paper proposes a novel quality selection mechanism based on a Deep Q-Network (DQN) model, the DQN-based DASH ABR($DQN_{ABR}$) mechanism. The $DQN_{ABR}$ mechanism replaces the existing DASH ABR algorithm with an intelligent deep learning model which optimizes service quality to mobile users through reinforcement learning. Compared to the existing approaches, the experimental analysis shows that the proposed solution outperforms in terms of adapting to dynamic wireless network situations and improving QoE experience of end users.
Real-time dynamic substructuring tests have been conducted on a cable-deck system. The cable is representative of a full scale cable for a cable-stayed bridge and it interacts with a deck, numerically modelled as a single-degree-of-freedom system. The purpose of exciting the inclined cable at the bottom is to identify its nonlinear dynamics and to mark the stability boundary of the semi-trivial solution. The latter physically corresponds to the point at which the cable starts to have an out-of-plane response when both input and previous response were in-plane. The numerical and the physical parts of the system interact through a transfer system, which is an actuator, and the input signal generated by the numerical model is assumed to interact instantaneously with the system. However, only an ideal system manifests a perfect correspondence between the desired signal and the applied signal. In fact, the transfer system introduces into the desired input signal a delay, which considerably affects the feedback force that, in turn, is processed to generate a new input. The effectiveness of the control algorithm is measured by using the synchronization technique, while the online adaptive forward prediction algorithm is used to compensate for the delay error, which is present in the performed tests. The response of the cable interacting with the deck has been experimentally observed, both in the presence of delay and when delay is compensated for, and it has been compared with the analytical model. The effects of the interface delay in real-time dynamic substructuring tests conducted on the cable-deck system are extensively discussed.
In current CBR(Case-Based Reasoning) systems, the case adaptation is usually performed by rule-based method that use rules hand-coded by the system developer. So, CBR system designer faces knowledge acquisition bottleneck similar to those found in traditional expert system design. In this thesis, 1 present a model for learning method of case adaptation knowledge using case base. The feature difference of each pair of cases are noted and become the antecedent part of an adaptation rule, the differences between the solutions in the compared cases become the consequent part of the rule. However, the number of rules that can possibly be discovered using a learning algorithm is enormous. The first method for finding cases to compare uses a syntactic measure of the distance between cases. The threshold fur identification of candidates for comparison is fixed th the maximum number of differences between the target and retrived case from all retrievals. The second method is to use similarity metric since the threshold method may not be an accurate measure. I suggest the elimination method of duplicate rules. In the elimination process, a confidence value is assigned to each rule based on its frequency. The learned adaptation rules is applied in riven target Problem. The basic. process involves search for all rules that handle at least one difference followed by a combination process in which complete solutions are built.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권4호
/
pp.1603-1623
/
2020
Multiple Mobile Robots System (MMRS) has shown many attractive features in lots of real-world applications that motivate their rapid and wide diffusion. In MMRS, the Cooperative Localization (CL) is the basis and premise of its high-performance task. However, the statistical characteristics of the system noise should be already known in traditional CL algorithms, which is difficult to satisfy in actual MMRS because of the numerous of disturbances form the complex external environment. So the CL accuracy will be reduced. To solve this problem, an improved Adaptive Active Cooperative Localization (A2CL) algorithm based on information optimization strategy for MMRS is proposed in this manuscript. In this manuscript, an adaptive information fusion algorithm based on the variance component estimation under Extended Kalman filter (VCEKF) method for MMRS is introduced firstly to enhance the robustness and accuracy of information fusion by estimating the covariance matrix of the system noise or observation noise in real time. Besides, to decrease the effect of observation uncertainty on CL accuracy further, an observation optimization strategy based on information theory, the Model Predictive Control (MPC) strategy, is used here to maximize the information amount from observations. And semi-physical simulation experiments were carried out to verity the A2CL algorithm's performance finally. Results proved that the presented A2CL algorithm based on information optimization strategy for MMRS cannot only enhance the CL accuracy effectively but also have good robustness.
도심지의 빌딩들은 시간이 갈수록 형태가 다양해지고, 식생이나 도로와 같은 객체들과 유사한 분광 특성을 나타냄으로써 광학 영상만을 이용하여 추출하기가 어려워지고 있다. 본 연구에서는 이러한 문제를 해결하기 위해 항공 Light Detection and Ranging(LiDAR) 자료와 항공 사진의 융합을 통해 항공 사진상에서의 빌딩과 그 경계를 추출하는 방법을 제안한다. 먼저 항공 사진에 Adaptive dynamic range linear stretching 방사 강조 기법을 적용하고, 에디슨 에지 디텍터를 이용하여 이진 경계 지도를 생성하였다. 동시에 항공 LiDAR 자료로부터 normalized Digital Surface Model을 생성하고, 빌딩 영역을 추출하여 이진 경계 지도와의 중첩을 통해 임시 빌딩 영역을 추출하였다. 마지막으로 항공 LiDAR 자료와 항공 사진 간의 위치 오차를 고려하여 경계 강화 과정을 수행함으로써 최종 빌딩 경계를 추출하였다. 제안 방법의 검증을 위해 두 개의 실험 지역을 선정하여 제안 방법을 적용하였고, 정량적인 정확도평가에서 F-measure, Jaccard coefficient, Yule coefficient, Overall accuracy의 값이 모두 0.85 이상의 정확도를 보여주었다.
최근 높은 휴대성과 이동성을 특징으로 하는 모바일 도메인에서 사용자의 상황정보를 이용한 모바일 상황인식 서비스에 대한 관심이 증대되고 있다. 모바일 상황인식 서비스들은 사용자의 상황정보를 모바일 기기로부터 수집 및 분석하여 추론 시스템을 통해 상황을 추론해야 한다. 그러나 모바일 도메인의 높은 이동성으로 인해 상황에 적합한 추론 결과를 얻기에 어려움이 있다. 또한, 잘못된 추론 결과를 수정 및 적응하기 위한 체계적인 방법에 대한 연구가 부족하다. 본 논문은 이러한 문제점을 개선하기 위해 소프트웨어 사이버네틱스 기반 피드백 개념을 적용한 체계적인 프로세스 모델을 제시한다. 또한 피드백 프로세스 모델을 적용, 설계 및 구현한 MADA(Monitoring, Analysis, Determinating, Adaptation) 프레임워크를 제시한다. 이를 통해 정확한 상황 추론이 가능한 적응적 모바일 상황인식 서비스 개발 환경을 구축할 수 있으며 추론 규칙의 체계적 관리가 가능하다.
본 연구는 향유신념과 감사에 관한 선행연구를 토대로 향유신념과 감사의 관련성을 살펴보고 향유신념과 감사의 관계에서 긍정정서와 인지적 정서조절의 이중 매개 모형을 확인하고자 하였다. 이를 검증하기 위해 대학생 및 성인 485명을 대상으로 향유신념, 감사, 긍정정서, 인지적 정서조절을 측정하고, 구조 방정식 모형을 통하여 결과를 분석하였다. 연구 결과, 향유신념, 긍정정서, 적응적 인지적 정서조절, 감사는 유의한 정적 상관을 보였다. 또한 연구 모형을 검증한 결과 향유신념과 감사의 관계에서 긍정정서와 적응적 인지적 정서조절의 이중매개효과가 유의한 것으로 나타났다. 이러한 결과를 토대로 연구과 상담 및 심리치료에 대한 시사점과 본 연구의 제한점 및 후속 연구를 위한 제언을 논의하였다.
Lim, Joanne Mun-Yee;Chang, YoongChoon;Alias, MohamadYusoff;Loo, Jonathan
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권4호
/
pp.1337-1358
/
2015
In this paper, we present an analytical and simulated study on the performance of adaptive vehicular ad hoc networks (VANET) priority based on Transmission Distance Reliability Range (TDRR) and data type. VANET topology changes rapidly due to its inherent nature of high mobility nodes and unpredictable environments. Therefore, nodes in VANET must be able to adapt to the ever changing environment and optimize parameters to enhance performance. However, there is a lack of adaptability in the current VANET scheme. Existing VANET IEEE802.11p's Enhanced Distributed Channel Access; EDCA assigns priority solely based on data type. In this paper, we propose a new priority scheme which utilizes Markov model to perform TDRR prediction and assign priorities based on the proposed Markov TDRR Prediction with Enhanced Priority VANET Scheme (MarPVS). Subsequently, we performed an analytical study on MarPVS performance modeling. In particular, considering five different priority levels defined in MarPVS, we derived the probability of successful transmission, the number of low priority messages in back off process and concurrent low priority transmission. Finally, the results are used to derive the average transmission delay for data types defined in MarPVS. Numerical results are provided along with simulation results which confirm the accuracy of the proposed analysis. Simulation results demonstrate that the proposed MarPVS results in lower transmission latency and higher packet success rate in comparison with the default IEEE802.11p scheme and greedy scheduler scheme.
본 논문에서는 2차원 영상에서 3차원 깊이정보를 추출하기 위해서 진화연산 알고리즘을 적용한 고속 3차원 모델 추출 기법을 제안한다. 진화연산 알고리즘은 자연 선택과 개체군 유전학에 기반 한 생물학적 진화 과정을 통해 최적의 해를 찾는 효율적인 탐색 기법이다. 기존의 스테레오 정합 방법에서 생성되어진 2차원 깊이 정보인 변이 맵은 경계 부근에서 애매한 결과를 도출함으로써 변이의 세밀하고 정확한 정보를 잃어 실 영상과는 다소 차이를 갖는다. 본 논문에서는 소형 유전자 알고리즘을 스테레오 정합환경에 맞게 변형시키고, 생성된 변이 맵의 모호성을 해결하기 위해 이전 세대의 변이 맵으로부터 경계를 검출한 변이 경계정보에서 이웃한 화소의 변이 복잡도를 측정하여 복잡도에 따라 적응적 윈도우를 결정하여 정합에 사용하였다. 실험을 통해 제안한 방식이 이완 처리를 포함한 기존의 정합 방식보다 변이 맵 생성에 있어 보다 상세하고 매끄러운 변이 결과를 얻을 수 있었다.
유도전동기의 속도 제어를 원활하게 수행하기 위해서는 필요한 회전자 속도 정보를 얻어야 한다. 속도 정보를 얻으려면 센서를 사용하여 얻어야 하지만, 센서를 사용하지 않고 적절한 알고리즘을 이용하여 얻을 수도 있다. 속도 정보를 얻기 위해서 모델 기준 적응 시스템(MARS; model reference adaptive system)을 사용하여 시스템을 설계 하였고, 유도전동기의 속도 제어 방식 중에 하나인 간접 벡터 제어 방식으로 전동기의 전류와 회전자 파라미터 값으로부터 연산된 슬립 주파수를 회전자 속도와 합하여 자속의 위치 정보를 얻어내는 방식을 사용하였다. 실제 자속 정보 없이도 넓은 속도 영역에서 간단하게 순시 전류 제어를 행할 수 있으며 제어기의 구조가 간단하다는 장점을 가질 수 있다. 따라서 본 논문에서는 간접 벡터 제어 방식을 기반으로 제어 시스템을 구성하였고, 이를 실현하기 위해 필요한 회전자 속도 정보를 센서로 사용하지 않고 개발한 지능형 알고리즘으로 추정하여 유도전동기의 속도 제어 시스템을 개발하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.