• Title/Summary/Keyword: adaptive model

Search Result 2,860, Processing Time 0.031 seconds

Adaptive Current Control of Power LEDs Using Half-Bridge LLC Resonant Converter (Half Bridge LLC 공진 컨버터를 이용한 파워 LED의 정전류 적응제어기)

  • Kim, Yeung-Suk;Kim, Young-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.48-53
    • /
    • 2013
  • In general, the LLC resonant topology consists of three stages as; square wave generator, resonant network, and rectifier network. LLC resonant converter has the time slowly varying parameters. However, the power LEDs as the load of LLC converter can be regarded as fast time varying parameters. In this paper, the mathematical model of half-bridge resonant converter including with the power LEDs is introduced for the current controller design model. Using this controller design model, the parameter adaptive output feedback controller will be designed to control the power LEDs current. In order to show the validities of the proposed model, the parameter adaptive output feedback controller, the experimental investigation will be presented.

Adaptive M-estimation in Regression Model

  • Han, Sang-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.859-871
    • /
    • 2003
  • In this paper we introduce some adaptive M-estimators using selector statistics to estimate the slope of regression model under the symmetric and continuous underlying error distributions. This selector statistics is based on the residuals after the preliminary fit L$_1$ (least absolute estimator) and the idea of Hogg(1983) and Hogg et. al. (1988) who used averages of some order statistics to discriminate underlying symmetric distributions in the location model. If we use L$_1$ as a preliminary fit to get residuals, we find the asymptotic distribution of sample quantiles of residual are slightly different from that of sample quantiles in the location model. If we use the functions of sample quantiles of residuals as selector statistics, we find the suitable quantile points of residual based on maximizing the asymptotic distance index to discriminate distributions under consideration. In Monte Carlo study, this adaptive M-estimation method using selector statistics works pretty good in wide range of underlying error distributions.

Adaptive PID Controller for Nonlinear Systems using Fuzzy Model (퍼지 모델을 이용한 비선형 시스템의 적응 PID 제어기)

  • Kim, Jong-Hua;Lee, Won-Chang;Kang, Geun-Taek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.85-90
    • /
    • 2003
  • This paper presents an adaptive PID control scheme for nonlinear system. TSK(Takagi-Sugeno-Kang) fuzzy model is used to estimate the error of control input, and the parameters of PID controller are adapted using the error. The parameters of TSK fuzzy model also adapted to plant. The proposed algorithm allows designing adaptive PID controller which Is adapted to the uncertainty of nonlinear plant and the change of parameters. The usefulness of the proposed algorithm is also certificated by the several simulations.

ADAPTIVE CHANDRASEKHAR FILLTER FOR LINEAR DISCRETE-TIME STATIONALY STOCHASTIC SYSTEMS

  • Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.1041-1044
    • /
    • 1988
  • This paper considers the design problem of adaptive filters based an the state-space models for linear discrete-time stationary stochastic signal processes. The adaptive state estimator consists of both the predictor and the sequential prediction error estimator. The discrete Chandrasakhar filter developed by author is employed as the predictor and the nonlinear least-squares estimator is used as the sequential prediction error estimator. Two models are presented for calculating the parameter sensitivity functions in the adaptive filter. One is the exact model called the linear innovations model and the other is the simplified model obtained by neglecting the sensitivities of the Chandrasekhar X and Y functions with respect to the unknown parameters in the exact model.

  • PDF

Model Reference Adaptive Control Using Non-Euclidean Gradient Descent

  • Lee, Sang-Heon;Robert Mahony;Kim, Il-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.330-340
    • /
    • 2002
  • In this Paper. a non-linear approach to a design of model reference adaptive control is presented. The approach is demonstrated by a case study of a simple single-pole and no zero, linear, discrete-time plant. The essence of the idea is to generate a full non-linear model of the plant dynamics and the parameter adaptation dynamics as a gradient descent algorithm with respect to a Riemannian metric. It is shown how a Riemannian metric can be chosen so that the modelled plant dynamics do in fact match the true plant dynamics. The performance of the proposed scheme is compared to a traditional model reference adaptive control scheme using the classical sensitivity derivatives (Euclidean gradients) for the descent algorithm.

Adaptive Control Incorporating Neural Network for a Pneumatic Servo Cylinder (공압 서보실린더의 신경회로망 결합형 적응제어)

  • Jang Yun Seong;Cho Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.88-95
    • /
    • 2005
  • This paper presents a design scheme of model reference adaptive control incorporating a Neural Network for a pneumatic servo system. The parameters of discrete-time model of plant are estimated by using the recursive least square method. Neural Network is utilized in order to compensate the nonlinear nature of plant such as compressibility of air and frictions present in cylinder. The experiment of a trajectory tracking control using the proposed control scheme has been performed and its effectiveness has been proved by comparing with the results of a model reference adaptive control.

Adaptive Parameter Estimator Design for Takagi-Sugeno Fuzzy Models

  • Park, Chang-Woo;Lee, Chang-Hoon;Park, Mignon;Kim, Seungho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.40.5-40
    • /
    • 2001
  • In this paper, a new on-line parameter estimation methodology for the general continuous time Takagi-Sugeno(T-S) fuzzy model whose parameters are poorly known or uncertain is presented. An estimator with an appropriate adaptive law for updating the parameters is designed and analyzed based on the Lyapunov theory. The adaptive law is designed so that the estimation model follows the plant parameterized model. By the proposed estimator, the parameters of the T-S fuzzy model can be estimated by observing the behavior of the system and it can be a basis for the indirect adaptive fuzzy control.

  • PDF

Adaptive Hybrid Genetic Algorithm Approach for Optimizing Closed-Loop Supply Chain Model (폐쇄루프 공급망 모델 최적화를 위한 적응형혼합유전알고리즘 접근법)

  • Yun, YoungSu;Chuluunsukh, Anudari;Chen, Xing
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.79-89
    • /
    • 2017
  • The Optimization of a Closed-Loop Supply Chain (CLSC) Model Using an Adaptive Hybrid Genetic Algorithm (AHGA) Approach is Considered in this Paper. With Forward and Reverse Logistics as an Integrated Logistics Concept, The CLSC Model is Consisted of Various Facilities Such as Part Supplier, Product Manufacturer, Collection Center, Recovery Center, etc. A Mathematical Model and the AHGA Approach are Used for Representing and Implementing the CLSC Model, Respectively. Several Conventional Approaches Including the AHGA Approach are Used for Comparing their Performances in Numerical Experiment.

A Study on an Adaptive Model Predictive Control for Nonlinear Processes using Fuzzy Model (퍼지모델을 이용한 비선형 공정의 적응 모델예측제어에 관한 연구)

  • 박종진;우광방
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.97-105
    • /
    • 1996
  • In this paper, an adaptive model predictive controller for nodinear processes using fuzzy model is proposed. Adaptive structure is implemented by recursive fuzzy modeling. The model and control law can be obtained the same as GPC, because the consequent parts of the fuzzy model comprise linear equations of input and output variables. The proposed Adaptive fuzzy model predictive controller (AFMPC) controls nonlinear process well due to the intrinsic nonlinearity of the fuzzy model. When AFMPC's output is variation in the process control input, it maintains zero steady-state offset for a constant reference input and has superior performance. The properties and performance of the proposed control scheme were examined with nonlinear plant by simulation.

  • PDF

Lyapunov-based Semi-active Control of Adaptive Base Isolation System employing Magnetorheological Elastomer base isolators

  • Chen, Xi;Li, Jianchun;Li, Yancheng;Gu, Xiaoyu
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1077-1099
    • /
    • 2016
  • One of the main shortcomings in the current passive base isolation system is lack of adaptability. The recent research and development of a novel adaptive seismic isolator based on magnetorheological elastomer (MRE) material has created an opportunity to add adaptability to base isolation systems for civil structures. The new MRE based base isolator is able to significantly alter its shear modulus or lateral stiffness with the applied magnetic field or electric current, which makes it a competitive candidate to develop an adaptive base isolation system. This paper aims at exploring suitable control algorithms for such adaptive base isolation system by developing a close-loop semi-active control system for a building structure equipped with MRE base isolators. The MRE base isolator is simulated by a numerical model derived from experimental characterization based on the Bouc-Wen Model, which is able to describe the force-displacement response of the device accurately. The parameters of Bouc-Wen Model such as the stiffness and the damping coefficients are described as functions of the applied current. The state-space model is built by analyzing the dynamic property of the structure embedded with MRE base isolators. A Lyapunov-based controller is designed to adaptively vary the current applied to MRE base isolator to suppress the quake-induced vibrations. The proposed control method is applied to a widely used benchmark base-isolated structure by numerical simulation. The performance of the adaptive base isolation system was evaluated through comparison with optimal passive base isolation system and a passive base isolation system with optimized base shear. It is concluded that the adaptive base isolation system with proposed Lyapunov-based semi-active control surpasses the performance of other two passive systems in protecting the civil structures under seismic events.