• Title/Summary/Keyword: adaptive mesh

Search Result 254, Processing Time 0.033 seconds

An Automated Adaptive Finite Element Mesh Generation for Dynamics

  • Yoon, Chongyul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.83-88
    • /
    • 2019
  • Structural analysis remains as an essential part of any integrated civil engineering system in today's rapidly changing computing environment. Even with enormous advancements in capabilities of computers and mobile tools, enhancing computational efficiency of algorithms is necessary to meet the changing demands for quick real time response systems. The finite element method is still the most widely used method of computational structural analysis; a robust, reliable and automated finite element structural analysis module is essential in a modern integrated structural engineering system. To be a part of an automated finite element structural analysis, an efficient adaptive mesh generation scheme based on R-H refinement for the mesh and error estimates from representative strain values at Gauss points is described. A coefficient that depends on the shape of element is used to correct overly distorted elements. Two simple case studies show the validity and computational efficiency. The scheme is appropriate for nonlinear and dynamic problems in earthquake engineering which generally require a huge number of iterative computations.

Predicting BVI Loadings and Wake Structure of the HARTII Rotor Using Adaptive Unstructured Meshes

  • Yu, Dong-Ok;Jung, Mun-Seung;Kwon, Oh-Joon;Yu, Yung-H.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • The flow fields around the HARTII rotor were numerically investigated using a viscous flow solver on adaptive unstructured meshes. An overset mesh and a deforming mesh technique were used to handle the blade motion including blade deflection, which was obtain from the HARTII experimental data. A solution-adaptive mesh refinement technique was also used to capture the rotor wake effectively. Comparison of the sectional normal force and pitching moment at 87% radial station between the two cases, with and without the blade deflection, showed that the blade loading is significantly affected by blade torsion. It was found that as the mesh was refined, the strength of tip vortex is better preserved, and the magnitude of high frequency blade loading, caused by blade-vortex interaction (BVI), is further magnified. It was also found that a proper time step size, which corresponds to the cell size, should be used to predict unsteady solutions accurately. In general, the numerical results in terms of the unsteady blade loading and the rotor wake show good agreement with the experimental data.

Adaptive finite element wind analysis with mesh refinement and recovery

  • Choi, Chang-Koon;Yu, Won-Jin
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.111-125
    • /
    • 1998
  • This paper deals with the development of variable-node element and its application to the adaptive h-version mesh refinement-recovery for the incompressible viscous flow analysis. The element which has variable mid-side nodes can be used in generating the transition zone between the refined and unrefined element and efficiently used for the construction of a refined mesh without generating distorted elements. A modified Guassian quadrature is needed to evaluate the element matrices due to the discontinuity of derivatives of the shape functions used for the element. The penalty function method which can reduce the number of the independent variables is adopted for the purpose of computational efficiency and the selective reduced integration is carried out for the convection and pressure terms to preserve the stability of solution. For the economical analysis of transient problems in which the locations to be refined are changed in accordance with the dynamic distribution of velocity gradient, not only the mesh refinement but also the mesh recovery is needed. The numerical examples show that the optimal mesh for the finite element analysis of a wind around the structures can be obtained automatically by the proposed scheme.

Mesh Stability Study for the Performance Assessment of a Deep Geological Repository Using APro

  • Hyun Ho Cho;Hong Jang;Dong Hyuk Lee;Jung-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.283-294
    • /
    • 2023
  • APro, developed in KAERI for the process-based total system performance assessment (TSPA) of deep geological disposal systems, performs finite element method (FEM)-based multiphysics analysis. In the FEM-based analysis, the mesh element quality influences the numerical solution accuracy, memory requirement, and computation time. Therefore, an appropriate mesh structure should be constructed before the mesh stability analysis to achieve an accurate and efficient process-based TSPA. A generic reference case of DECOVALEX-2023 Task F, which has been proposed for simulating stationary groundwater flow and time-dependent conservative transport of two tracers, was used in this study for mesh stability analysis. The relative differences in tracer concentration varying mesh structures were determined by comparing with the results for the finest mesh structure. For calculation efficiency, the memory requirements and computation time were compared. Based on the mesh stability analysis, an approach based on adaptive mesh refinement was developed to resolve the error in the early stage of the simulation time-period. It was observed that the relative difference in the tracer concentration significantly decreased with high calculation efficiency.

A meshfree method based on adaptive refinement method and its application for deformation analysis (변형해석을 위한 적응적 세분화방법에 기초한 무요소법)

  • Han, Kyu-Taek
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • The finite element method(FEM) presents some limitations when the mesh becomes highly distorted. For analysis of metal forming processes with large deformation, the conventional finite element method usually requires several remeshing operations due to severe mesh distortion. The new computational method developed in the recent years, usually designated by meshfree method, offers an attractive approach to avoid those time-consuming remeshing efforts. This new method uses a set of points to represent the problem domain with no need of an additional mesh. Also this new generation of computational method provides a higher rate of convergence than that of the conventional finite element methods. One of the promising applications of meshfree methods is the adaptive refinement for problems having multi-scale nature. In this study, an adaptive node generation procedure is proposed and also to illustrate the efficiency of proposed method, several numerical examples are presented.

  • PDF

Two-Dimensional Adaptive Mesh Generation Algorithm and its Application with Higher-Order Compressible Flow Solver

  • Phongthanapanich, Sutthisak;Dechaumphai, Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2190-2203
    • /
    • 2004
  • A combined procedure for two-dimensional Delaunay mesh generation algorithm and an adaptive remeshing technique with higher-order compressible flow solver is presented. A pseudo-code procedure is described for the adaptive remeshing technique. The flux-difference splitting scheme with a modified multidimensional dissipation for high-speed compressible flow analysis on unstructured meshes is proposed. The scheme eliminates nonphysical flow solutions such as the spurious bump of the carbuncle phenomenon observed from the bow shock of the flow over a blunt body and the oscillation in the odd-even grid perturbation in a straight duct for the Quirk's odd-even decoupling test. The proposed scheme is further extended to achieve higher-order spatial and temporal solution accuracy. The performance of the combined procedure is evaluated on unstructured triangular meshes by solving several steady-state and transient high-speed compressible flow problems.

ADAPTIVE MOMENT-OF-FLUID METHOD : A NEW VOLUME-TRACKING METHOD FOR MULTIPHASE FLOW COMPUTATION

  • Ahn, Hyung-Taek
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • A novel adaptive mesh refinement(AMR) strategy based on the Moment-of-Fluid(MOF) method for volume-tracking dynamic interface computation is presented. The Moment-of-Fluid method is a new interface reconstruction and volume advection method using volume fraction as well as material centroid. The adaptive mesh refinement is performed based on the error indicator, the deviation of the actual centroid obtained by interface reconstruction from the reference centroids given by moment advection process. Using the AMR-MOF method, the accuracy of volume-tracking computation with evolving interfaces is improved significantly compared to other published results.

Adaptive Mesh h-Refinement using Compatible Transition Elements in Plate Bending Problems (평판휨 문제에서 적합변이요소를 이용한 적응적 체눈 h-세분화)

  • 최창근;박용명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.9-15
    • /
    • 1990
  • In this study, an adaptive mesh h-refinement procedure was presented in plate bending problems. By introducing the transition elements for the procedure, same drawbacks due to the irregular nodes are eliminated which are generated in the consequence of local mesh refinement in common adaptive h-version performed by single type of quadrilateral elements. For the above objective, compatible 5-node through 7-node transition plate bending elements are developed by including variable number of midside nodes. Using the Zienkiewicn-Zhu error estimator, some numerical examples are presented to show the effectiveness of the adaptive h-refinement using the transition elements.

  • PDF

Numerical Evaluations of the Effect of Feature Maps on Content-Adaptive Finite Element Mesh Generation

  • Lee, W.H.;Kim, T.S.;Cho, M.H.;Lee, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.8-16
    • /
    • 2007
  • Finite element analysis (FEA) is an effective means for the analysis of bioelectromagnetism. It has been successfully applied to various problems over conventional methods such as boundary element analysis and finite difference analysis. However, its utilization has been limited due to the overwhelming computational load despite of its analytical power. We have previously developed a novel mesh generation scheme that produces FE meshes that are content-adaptive to given MR images. MRI content-adaptive FE meshes (cMeshes) represent the electrically conducting domain more effectively with far less number of nodes and elements, thus lessen the computational load. In general, the cMesh generation is affected by the quality of feature maps derived from MRI. In this study, we have tested various feature maps created based on the improved differential geometry measures for more effective cMesh head models. As performance indices, correlation coefficient (CC), root mean squared error (RMSE), relative error (RE), and the quality of cMesh triangle elements are used. The results show that there is a significant variation according to the characteristics of specific feature maps on cMesh generation, and offer additional choices of feature maps to yield more effective and efficient generation of cMeshes. We believe that cMeshes with specific and improved feature map generation schemes should be useful in the FEA of bioelectromagnetic problems.

Automated Adaptive Tetrahedral Element Generation for Three-Dimensional Metal Forming Simulation (삼차원 소성가공 공정 시뮬레이션을 위한 지능형 사면체 요소망 자동생성)

  • Lee M.C.;Joun M.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.189-194
    • /
    • 2006
  • In this paper, an automated adaptive mesh generation scheme, based on an advancing-front-Delaunay method, is presented fur finite element simulation of three dimensional bulk metal farming processes. Basic approach is introduced in detail, including a surface meshing and volume meshing technique and a mesh density control scheme. The presented approach is applied to automatic forging simulation in order to evaluate the effect of the developed schemes. Comparison shows a good agreement between required mesh density and generated mesh density, implying that the presented approach is appropriate for automatic mesh generation in metal forming simulation.