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1. Introduction

Structural analysis remains as an essential part of any integrated 

civil engineering system in today’s rapidly changing computing 

environment. Even with enormous advancements in capabilities of 

computers and mobile tools, enhancing computational efficiency of 

algorithms is necessary to meet the changing demands for quick real 

time response systems. The finite element method with many variations 

[1-4] is still the most widely used method of computational structural 

analysis; a robust, reliable and automated finite element structural 

analysis module is still an essential component in a modern integrated 

structural engineering system.

Complex dynamic and nonlinear analyses of structural models often 

requires many finite element analyses of the same structural model. If 

the same mesh is used throughout an analysis, computational 

inefficiency results due to fine mesh where they are not needed and 

inaccuracy due to overly distorted elements formed during the analysis 

that may proceed undetected as only the initial and the final element 

shapes are generally checked in practice. Thus, finite element meshes 

for these types of analyses must be dynamically adaptive and com-

putationally efficient as results depend on the mesh and the element 

types used [5-7].

An efficient adaptive mesh generation scheme based on R-H 

refinement [7] is described. The scheme uses computationally simple 

error estimation based on representative strains [8]. A coefficient 

depending on the element shape [9] is used to correct overly distorted 

elements. The R-H refinement optimally combines the r-method 

(moving an existing node) and the h-method (dividing an element into 

smaller elements) using a dispersion parameter [8, 9]. The scheme 

includes a check for limiting distortion for each element using shape 

factor that is easily computed for a particular shape [8-10]. The dynamic 

analysis considered is in time domain, based on direct integration. The 

results are based on the basic procedure outlined in reference [11] but 

the data are from diverse refinements and improvements on the 

software and tuning of parameters. Two simple case studies for planar 

problems using 4-node quadrilateral elements show the validity and 

computational efficiency. The scheme is appropriate for nonlinear and 

dynamic problems in earthquake engineering which generally require 

a huge number of iterative computations. 
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2. Time Domain Finite Element Dynamic Analysis

The direct numerical integration iterative formulas in the time 

domain for a typical dynamic structural analysis based on the widely 

used Newmark-β method may be summarized as follows [5, 12]: 

           



           (1)

             (2)

Here,  ,   , and    are the displacement, velocity, and acceleration 

vectors in the ith step and    ,     , are      are the similar 

quantities in the i+1th step;   is the time step duration; β and γ are 

parameters selected by the user and the recommended values of β=1/4 

and γ=1/2 are commonly used for efficient convergence.

The matrix equilibrium equations for the i+1th step may be 

represented as follows:



  


   (3)

The matrices    and   represent the following:


   



  
  (4)



       



  
      




       (5)

Here,   is the stiffness matrix,   is the mass matrix, and    is the 

force vector for the i+1th time step.

3. Mesh Errors and Refinements

3.1 Relative Gauss Point strains as Error Estimates

An adaptive mesh generation scheme automates mesh generation 

by repeated improvement of the previous mesh based on error 

estimations of the previous mesh and improvement strategies based on 

the errors [10,13]. Relative strains at Gauss points which are easily 

computed since the strains here need to be computed for the computation 

of the element stiffnesses; these relative and representative error 

estimates are proven to be computationally efficient error estimates for 

mesh refinement purposes [10].

For planar problems using quadrilateral elements, the representative 

strain value of element i may be represented by the following 

equations:

    



  



   

(6)

        ×



(7)

Here,   is the norm of the k directional (x, y and xy for planar 

problems where xy is the shear component) standard deviation of the 

strain,   is the number of Gauss points in the k direction,   is the k 

directional strain of Gauss point j,   is the k directional strain, and 

  is the norm of the representative strain of element i which is used 

as error for element I. In addition,   is the area of element i and    is 

the total area of the entire mesh. In Eq. (7), the representative error of 

element i is weighted by the element's area with respect to the total area 

and thus the relative order of errors for all elements are computed to 

identify elements to be adaptively changed. Previous studies have 

shown that this is computationally very efficient for achieving this 

[11].

3.2 The R-H Method of Mesh Refinement with Dispersion 

and Shape Factors

The adaptive mesh generation based on the error estimation with 

representative strains is formulated combining the r-method and the 

h-method. The r-method moves existing node at coordinates (x,y) to 

the new adapted coordinates 

, 


:

 

  




  


  




 

(8)

 

  




  


  




 

(9)

Here,  ,   are the coordinates of the centroid of element i, and na is 

the number of elements sharing the considered node. For nodes on the 

boundary, Eqs. (8) and (9) are moved to the closest point on the 

boundary. Possible distortion of an element shape beyond the tolerable 

limit is checked by limiting the shape factor. Shape factor Si of a 

quadrilateral element i with total boundary length Li is defined as 

follows [8]:
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 




(10)

The shape factor is defined so that the maximum value is 1 which is 

for a square. Shape factors for quadrilaterals approaching a triangular 

shape are less than around 0.8285 (shape factor for a right equilateral 

triangle). A robust shape of a quadrilateral element has approximately 

equal side lengths and angles. The shape factors of these are close to 1. 

An attempt to keep shape factors close to 1 throughout the analysis 

produces reliable results. Generally, shape factors between 0.9 and 1.0 

are acceptable and thus the r-method restricts node movements with a 

limitation on the shape factor to be above 0.95.

The h-method divides an element into smaller elements of the same 

shape. The elements to be subdivided are based on the discretization 

parameter d defined as follows:

 
⋅ ║║ 



 (11)

Here,   is a constant,     is the mean representative strain 

value of the mesh and 


 is the maximum value of the applied load. 

A parametric study recommends a value between 14.0 and 15.0 for 

optimal value of   for general dynamics problems. Significant 

deviations of   from this range result in computational inefficiency 

for no apparent increase in accuracy [8, 11].

The effectiveness of the R-H method depends on strategies that 

combine the r-method and the h-method. Various means of combining 

have been studied [10, 13]. To obtain an optimal combination of the 

r-method and the h-method, first the representative strain values are 

normalized at each step so that the minimum and maximum values are 

from 0 to 100. A dispersion parameter D is defined as the absolute 

value of the difference between the mean of the normalized 

representative strains and the mode of the distribution of normalized 

representative strains:

    ║║    ║║│

(12)

A constant need to be set for D to shift between the r-method and the 

h-method. A reasonable value for this constant is around 18-20 where 

if D is larger than this value, the r-method is used, and in other cases, 

the h-method is used. A value around 19 sets the ratio of the r-method 

and the h-method to be about 3. A higher value for this constant will 

reduce this ratio. Generally, the h-method is much more efficient in 

reducing overall error as the element sizes are proportionately reduced 

(e.g. 1 element to 4 or 16 elements of the same shape reduced to 1/4 or 

1/16 of the original size). However, the r-method is essential in 

creating new shapes and orientations that are not overly distorted by 

using the shape factors given by Eq. (10). The R-H method of adaptive 

refinement of the mesh is terminated when the change in the sum of the 

representative strain values is less than the preset tolerance, typically 

set at 0.01%.

4. Planar Problems using Four Node Quadrilateral 

Elements

4.1 A Portal Example

Fig. 1 shows the sample two dimensional 600 cm wide and 600 cm 

high portal steel portal frame. The beam and columns are all 

rectangular 100 cm deep steel sections where Young's modulus is 

210×105 N/cm2, Poisson's ratio is 0.3, and the unit mass is 7.85×10-3 

kg/cm3. Element type is the four node isoparametric quadrilateral 

bilinear plane strain element. The only applied dynamic load is a 

concentrated load P at the center of the frame (point B in Fig. 1) where 

between time t=0 and t=1 second, one period of a sinusoidal load given 

by    Newton.

Free vibration response continues after the steady state response (1 

second), and the total response time considered is 5 seconds. The time 

step  selected for analysis is 0.005 seconds, yielding 1000 steps for 

5 seconds. The adaptive meshes are generated with dispersion parameter 

D = 19, discretization parameter d = 14, and the limit on shape factor Si 

is set to 0.95. The initial mesh to start the adaptive algorithm is a 

regular mesh composed of 144 identical square elements. The 

tolerance set to terminate the adaptive refinements is set at 0.01% for 

change in the sum of the representative strain from the previous step. A 

new mesh is generated at every four time steps, i.e., at every 0.02 

100 cm

600 cm

Y

B

100 cm 600 cm

300 cm

X

A

P

C

Fig. 1. Geometry of the portal example
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seconds. Table 1 shows a set of sample representative strain values in 

the initial steps of the dynamic adaptive mesh where the transitions of 

the r-method and the h-method are demonstrated. Overall, the adaptive 

mesh scheme satisfies the preset tolerance after about ten adaptive 

steps.

Fig. 2 shows the adaptive mesh at 0.275 seconds when the vertical 

deflection of point A is at the maximum which is during the steady 

state response; the number of elements generated here is the maximum 

at 840. Fig. 2 also shows the mesh when the number of elements is the 

minimum at 760, occurring at t=3.760.

The solution obtained by the dynamic adaptive meshes is named the 

strategic solution. In general practice, a regularly discretized mesh is 

used throughout the analysis; a regular mesh of square shapes with 576 

identical elements are used to simulate this and the solution from this is 

called the general solutions. To estimate a more accurate engineering 

solution without an adaptive scheme, a finer regular mesh with 2304 

elements is generated by dividing each element used in the general 

solution into four identical square elements. The solution obtained by 

using this fine mesh is the engineering solution. The finite element 

program is run on 64 bit Personal Computer with Intel (R) Pentium (R) 

CPU3240 @3.10GHz, 4.0 GB RAM, and Windows 10 Home Version 

1803. Figs. 3, 4 and 5 show comparisons of the vertical displacement of 

point A, the horizontal (x directional) normal stress of point C, and the 

vertical (y directional) normal stress of point C of the engineering, the 

general, and the strategy solutions. The figures show close agreement 

among the three solutions. However numeric values show that if the 

engineering solutions are assume to be the most accurate, the errors 

from the general solutions are much larger than the errors from the 

strategic solutions. Table 2 shows the comparative computation times 

and errors among the engineering, the general, and the strategic 

solutions. The total error is computed as the square root of the sum of 

the errors at selected critical points (A, B, C in Fig. 1) where the 

Table 1. A sample set of progression of representative strain values

Adaptive Step Method Maximum Representative Strain Sum of Representative Strain
Change in Sum of Representative 

Strain from previous Step (%)

0 0.0000192 0.0004492 -

1-initial h 0.0000051 0.0003361 33.65

2 h 0.0000010 0.0002533 32.68

3 r 0.0000009 0.0002510 0.9080

4 r 0.0000008 0.0002501 0.3585

5-final h 0.0000002 0.0001420 43.22

  

(a) Maximum number of elements-0.275 sec. [840 elements, 997 nodes], 

maximum deflection of A

(b) Minimum number of elements-3.760 sec. [760 elements, 903 nodes]

Fig. 2. Maximum and minimum number of elements

Fig. 3. Vertical displacement of bottom mid point A of the frame
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engineering solutions are assumed to have no error. The data on the 

table show that with the dynamic adaptive scheme, errors have been 

reduced significantly (3.59% to 0.38% for total displacement and 

2.82% to 0.24% for stress) with a 259.1% increase in real run time 

whereas the fine mesh for the entire structure for the engineering 

solutions required enormous increase in real run time of 562.93%. 

Even as the computing speed of computers is continuously increasing 

in general, the enormous amount of computing needed in the more 

accurate and complex analysis of structures requires computing 

efficiency in every aspect of the algorithm in order for the method to be 

practical [22, 23].

4.2 A cantilever beam example

Fig. 6 shows a series of meshes generated for a cantilever beam 

loaded with a concentrated load at the free end with time variation 

equal to P(t) in the portal sample in Section 4.1 (i.e. one period of a 

sinusoidal load given by    Newton). The figure shows 

overlap of undeformed previous with deformed refined meshes to 

depict how the generated meshes need to correct overly distorted 

elements as the structure deforms and to generate effective meshes at 

each time step as the analysis proceeds.

5. Conclusions

An efficient adaptive mesh generation scheme for dynamic analyses 

of structures in time domain is described. The scheme uses representative 

strain values from each element computed from the previous time step 

Fig. 4. Horizontal normal stress at mid point C of the frame

Fig. 5. Vertical normal stress at mid point C of the frame

Table 2. Comparative computation times and error

Solution 

Method

Total 

Displacement

Error vs 

Engineering

Total Stress 

Error vs 

Engineering

Computation 

Time

(Increase vs 

General)

Engineering

(2304 

elements)

0.00 %

(assumed exact)

0.00 %

(assumed exact)

13 min. 23 sec

(562.9%)

General

(576 elements)
3.59 % 2.82 %

2 min. 12 sec.

(0.00 %)

Strategy

(760-840 

elements)

0.38 % 0.24 %
5 min. 42sec.

(259.1 %)

(a) initial mesh

(b) load P applied at upper right corner

(c) Free vibration

Fig. 6. Deformed and undeformed meshes in the catilever beam 

example (Left fixed, Concentrated load at the free end)
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for estimation of error. Based on a dispersion parameter, the r-method 

and the h-method are combined optimally for mesh refinement. Shape 

factors used to correct overly distorted elements. Analyses of the 

applications of the scheme for two case studies show that the 

representative strain values which efficiently compute relative errors 

among elements successfully identify elements to be refined and that 

the algorithm is efficient computationally and have reasonable 

confidence level for accuracy for dynamic problems in structural 

analysis. The algorithm dynamically produces robust, effective (small 

errors) and computationally efficient meshes for finite element analyses. 

The scheme is applicable to other general nonlinear analyses where 

requirements for generated meshes are similar to those required by the 

case studies. The scheme is especially appropriate for real time 

computations of large complex structures under erratic time dependent 

loads such as earthquakes and turbulent winds. Efficient automated 

analyses of these dynamic and nonlinear problems are an essential part 

of today’s integrated structural engineering system. Addition of a 

powerful expert system that generates a reasonable initial mesh that 

starts the proposed adaptive mesh generation scheme will make the 

algorithm computationally more efficient.
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