• Title/Summary/Keyword: adaptive design

Search Result 2,256, Processing Time 0.028 seconds

Simulation of Sustainable Co-evolving Predator-Prey System Controlled by Neural Network

  • Lee, Taewoo;Kim, Sookyun;Shim, Yoonsik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.27-35
    • /
    • 2021
  • Artificial life is used in various fields of applied science by evaluating natural life-related systems, their processes, and evolution. Research has been actively conducted to evolve physical body design and behavioral control strategies for the dynamic activities of these artificial life forms. However, since co-evolution of shapes and neural networks is difficult, artificial life with optimized movements has only one movement in one form and most do not consider the environmental conditions around it. In this paper, artificial life that co-evolve bodies and neural networks using predator-prey models have environmental adaptive movements. The predator-prey hierarchy is then extended to the top-level predator, medium predator, prey three stages to determine the stability of the simulation according to initial population density and correlate between body evolution and population dynamics.

Numerical evaluation of gamma radiation monitoring

  • Rezaei, Mohsen;Ashoor, Mansour;Sarkhosh, Leila
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.807-817
    • /
    • 2019
  • Airborne Gamma Ray Spectrometry (AGRS) with its important applications such as gathering radiation information of ground surface, geochemistry measuring of the abundance of Potassium, Thorium and Uranium in outer earth layer, environmental and nuclear site surveillance has a key role in the field of nuclear science and human life. The Broyden-Fletcher-Goldfarb-Shanno (BFGS), with its advanced numerical unconstrained nonlinear optimization in collaboration with Artificial Neural Networks (ANNs) provides a noteworthy opportunity for modern AGRS. In this study a new AGRS system empowered by ANN-BFGS has been proposed and evaluated on available empirical AGRS data. To that effect different architectures of adaptive ANN-BFGS were implemented for a sort of published experimental AGRS outputs. The selected approach among of various training methods, with its low iteration cost and nondiagonal scaling allocation is a new powerful algorithm for AGRS data due to its inherent stochastic properties. Experiments were performed by different architectures and trainings, the selected scheme achieved the smallest number of epochs, the minimum Mean Square Error (MSE) and the maximum performance in compare with different types of optimization strategies and algorithms. The proposed method is capable to be implemented on a cost effective and minimum electronic equipment to present its real-time process, which will let it to be used on board a light Unmanned Aerial Vehicle (UAV). The advanced adaptation properties and models of neural network, the training of stochastic process and its implementation on DSP outstands an affordable, reliable and low cost AGRS design. The main outcome of the study shows this method increases the quality of curvature information of AGRS data while cost of the algorithm is reduced in each iteration so the proposed ANN-BFGS is a trustworthy appropriate model for Gamma-ray data reconstruction and analysis based on advanced novel artificial intelligence systems.

Satellite Laser Ranging System at Geochang Station

  • Lim, Hyung-Chul;Sung, Ki-Pyoung;Yu, Sung-Yeol;Choi, Mansoo;Park, Eunseo;Park, Jong-Uk;Choi, Chul-Sung;Kim, Simon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.253-261
    • /
    • 2018
  • Korea Astronomy and Space Science Institute (KASI) has been developing the space optical and laser tracking (SOLT) system for space geodesy, space situational awareness, and Korean space missions. The SOLT system comprises satellite laser ranging (SLR), adaptive optics (AO), and debris laser tracking (DLT) systems, which share numerous subsystems, such as an optical telescope and tracking mount. It is designed to be capable of laser ranging up to geosynchronous Earth orbit satellites with a laser retro-reflector array, space objects imaging brighter than magnitude 10, and laser tracking low Earth orbit space debris of uncooperative targets. For the realization of multiple functions in a novel configuration, the SOLT system employs a switching mirror that is installed inside the telescope pedestal and feeds the beam path to each system. The SLR and AO systems have already been established at the Geochang station, whereas the DLT system is currently under development and the AO system is being prepared for testing. In this study, the design and development of the SOLT system are addressed and the SLR data quality is evaluated compared to the International Laser Ranging Service (ILRS) tracking stations in terms of single-shot ranging precision. The analysis results indicate that the SLR system has a good ranging performance, to a few millimeters precision. Therefore, it is expected that the SLR system will not only play an important role as a member of the ILRS tracking network, but also contribute to future Korean space missions.

Desing of Secure Adaptive Clustering Algorithm Using Symmetric Key and LEAP in Sensor Network (센서네트워크 통신에서 대칭키 방식과 LEAP을 적용한 안전한 동적 클러스터링 알고리즘 설계)

  • Jang Kun-Won;Shin Dong-Gyu;Jun Moon-Seog
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.3
    • /
    • pp.29-38
    • /
    • 2006
  • Recent advances in wireless communication technology promotes many researches related to sensor network and brings several proposals to fit into various types of sensor network communication. The research direction for sensor network is divided into the method to maximize an energy efficiency and security researches that has not been remarkable so far. To maximize an energy efficiency, the methods to support data aggregation and cluster-head selection algorithm are proposed. To strengthen the security, the methods to support encryption techniques and manage a secret key that is applicable to sensor network are proposed, In. However, the combined method to satisfy both energy efficiency and security is in the shell. This paper is devoted to design the protocol that combines an efficient clustering protocol with key management algorithm that is fit into various types of sensor network communication. This protocol may be applied to sensor network systems that deal with sensitive data.

Artificial Intelligence in Personalized ICT Learning

  • Volodymyrivna, Krasheninnik Iryna;Vitaliiivna, Chorna Alona;Leonidovych, Koniukhov Serhii;Ibrahimova, Liudmyla;Iryna, Serdiuk
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.159-166
    • /
    • 2022
  • Artificial Intelligence has stimulated every aspect of today's life. Human thinking quality is trying to be involved through digital tools in all research areas of the modern era. The education industry is also leveraging artificial intelligence magical power. Uses of digital technologies in pedagogical paradigms are being observed from the last century. The widespread involvement of artificial intelligence starts reshaping the educational landscape. Adaptive learning is an emerging pedagogical technique that uses computer-based algorithms, tools, and technologies for the learning process. These intelligent practices help at each learning curve stage, from content development to student's exam evaluation. The quality of information technology students and professionals training has also improved drastically with the involvement of artificial intelligence systems. In this paper, we will investigate adopted digital methods in the education sector so far. We will focus on intelligent techniques adopted for information technology students and professionals. Our literature review works on our proposed framework that entails four categories. These categories are communication between teacher and student, improved content design for computing course, evaluation of student's performance and intelligent agent. Our research will present the role of artificial intelligence in reshaping the educational process.

Science Objectives and Design of Ionospheric Monitoring Instrument Ionospheric Anomaly Monitoring by Magnetometer And Plasma-probe (IAMMAP) for the CAS500-3 Satellite

  • Ryu, Kwangsun;Lee, Seunguk;Woo, Chang Ho;Lee, Junchan;Jang, Eunjin;Hwang, Jaemin;Kim, Jin-Kyu;Cha, Wonho;Kim, Dong-guk;Koo, BonJu;Park, SeongOg;Choi, Dooyoung;Choi, Cheong Rim
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.117-126
    • /
    • 2022
  • The Ionospheric Anomaly Monitoring by Magnetometer And Plasma-probe (IAMMAP) is one of the scientific instruments for the Compact Advanced Satellite 500-3 (CAS 500-3) which is planned to be launched by Korean Space Launch Vehicle in 2024. The main scientific objective of IAMMAP is to understand the complicated correlation between the equatorial electro-jet (EEJ) and the equatorial ionization anomaly (EIA) which play important roles in the dynamics of the ionospheric plasma in the dayside equator region. IAMMAP consists of an impedance probe (IP) for precise plasma measurement and magnetometers for EEJ current estimation. The designated sun-synchronous orbit along the quasi-meridional plane makes the instrument suitable for studying the EIA and EEJ. The newly-devised IP is expected to obtain the electron density of the ionosphere with unprecedented precision by measuring the upper-hybrid frequency (fUHR) of the ionospheric plasma, which is not affected by the satellite geometry, the spacecraft potential, or contamination unlike conventional Langmuir probes. A set of temperature-tolerant precision fluxgate magnetometers, called Adaptive In-phase MAGnetometer, is employed also for studying the complicated current system in the ionosphere and magnetosphere, which is particularly related with the EEJ caused by the potential difference along the zonal direction.

Emerging Research Advancements to Overcome the Peach Spring Frost

  • Pandiyan Muthuramalingam;Rajendran Jeyasri;Yeonju Park;Seongho Lee;Jae Hoon Jeong;Yunji Shin;Jinwook Kim;Sangmin Jung;Hyunsuk Shin
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.220-233
    • /
    • 2023
  • The phenomena of global warming has led to an increase in the average air temperature in temperate climates. Springtime frost damage is becoming more common, and after a period of dormancy, damage to buds, blooms, and developing fruits is greater significant than damage from low winter temperatures. Peaches are a crucial crop among moderate fruits. Spring frost damage in peaches can have a negative effect on crop growth, yield, and quality. It is noteworthy that these plants have evolved defenses against spring frost damage while being exposed to a variety of low temperatures in the early spring. In this current review, recent research advancements on spring frost damage avoidance in peaches were deliberated. Additionally, adaptive mechanisms of peach, such as deacclimation and reacclimation, were emphasized. Moreover, the emerging advancements using various omics approaches revealed the peach physiology and molecular mechanisms comprehensively. Furthermore, the use of chemical products and understanding the spring frost mechanisms through the use of environmental chamber temperature stimulation and infrared thermography studies were also discussed. This review is essential groundwork and paves the way to derive and design future research for agronomists and horticulturalists to overcome the challenges of spring frost damage avoidance and crop management in these circumstances.

Automated Finite Element Mesh Generation for Integrated Structural Systems (통합 구조 시스템의 유한요소망 형성의 자동화)

  • Yoon, Chongyul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.77-82
    • /
    • 2023
  • The structural analysis module is an essential part of any integrated structural system. Diverse integrated systems today require, from the analysis module, efficient real-time responses to real-time input such as earthquake signals, extreme weather-related forces, and man-made accidents. An integrated system may also be for the entire life span of a civil structure conceived during the initial conception, developed throughout various design stages, effectively used in construction, and utilized during usage and maintenance. All these integrated systems' essential part is the structural analysis module, which must be automated and computationally efficient so that responses may be almost immediate. The finite element method is often used for structural analysis, and for automation, many effective finite element meshes must be automatically generated for a given analysis. A computationally efficient finite element mesh generation scheme based on the r-h method of mesh refinement using strain deviations from the values at the Gauss points as error estimates from the previous mesh is described. Shape factors are used to sort out overly distorted elements. A standard cantilever beam analyzed by four-node plane stress elements is used as an example to show the effectiveness of the automated algorithm for a time-domain dynamic analysis. Although recent developments in computer hardware and software have made many new applications in integrated structural systems possible, structural analysis still needs to be executed efficiently in real-time. The algorithm applies to diverse integrated systems, including nonlinear analyses and general dynamic problems in earthquake engineering.

Seismic damage assessment of a large concrete gravity dam

  • Lounis Guechari;Abdelghani Seghir;Ouassila Kada;Abdelhamid Becheur
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.125-134
    • /
    • 2023
  • In the present work, a new global damage index is proposed for the seismic performance and failure analysis of concrete gravity dams. Unlike the existing indices of concrete structures, this index doesn't need scaling with an ultimate or an upper value. For this purpose, the Beni-Haroun dam in north-eastern Algeria, is considered as a case study, for which an average seismic capacity curve is first evaluated by performing several incremental dynamic analyses. The seismic performance point of the dam is then determined using the N2 method, considering multiple modes and taking into account the stiffness degradation. The seismic demand is obtained from the design spectrum of the Algerian seismic regulations. A series of recorded and artificial accelerograms are used as dynamic loads to evaluate the nonlinear responses of the dam. The nonlinear behaviour of the concrete mass is modelled by using continuum damage mechanics, where material damage is represented by a scalar field damage variable. This modelling, which is suitable for cyclic loading, uses only a single damage parameter to describe the stiffness degradation of the concrete. The hydrodynamic and the sediment pressures are included in the analyses. The obtained results show that the proposed damage index faithfully describes the successive brittle failures of the dam which increase with increasing applied ground accelerations. It is found that minor damage can occur for ground accelerations less than 0.3 g, and complete failure can be caused by accelerations greater than 0.45 g.

Metaheuristic models for the prediction of bearing capacity of pile foundation

  • Kumar, Manish;Biswas, Rahul;Kumar, Divesh Ranjan;T., Pradeep;Samui, Pijush
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.129-147
    • /
    • 2022
  • The properties of soil are naturally highly variable and thus, to ensure proper safety and reliability, we need to test a large number of samples across the length and depth. In pile foundations, conducting field tests are highly expensive and the traditional empirical relations too have been proven to be poor in performance. The study proposes a state-of-art Particle Swarm Optimization (PSO) hybridized Artificial Neural Network (ANN), Extreme Learning Machine (ELM) and Adaptive Neuro Fuzzy Inference System (ANFIS); and comparative analysis of metaheuristic models (ANN-PSO, ELM-PSO, ANFIS-PSO) for prediction of bearing capacity of pile foundation trained and tested on dataset of nearly 300 dynamic pile tests from the literature. A novel ensemble model of three hybrid models is constructed to combine and enhance the predictions of the individual models effectively. The authenticity of the dataset is confirmed using descriptive statistics, correlation matrix and sensitivity analysis. Ram weight and diameter of pile are found to be most influential input parameter. The comparative analysis reveals that ANFIS-PSO is the best performing model in testing phase (R2 = 0.85, RMSE = 0.01) while ELM-PSO performs best in training phase (R2 = 0.88, RMSE = 0.08); while the ensemble provided overall best performance based on the rank score. The performance of ANN-PSO is least satisfactory compared to the other two models. The findings were confirmed using Taylor diagram, error matrix and uncertainty analysis. Based on the results ELM-PSO and ANFIS-PSO is proposed to be used for the prediction of bearing capacity of piles and ensemble learning method of joining the outputs of individual models should be encouraged. The study possesses the potential to assist geotechnical engineers in the design phase of civil engineering projects.