Browse > Article
http://dx.doi.org/10.5140/JASS.2022.39.3.117

Science Objectives and Design of Ionospheric Monitoring Instrument Ionospheric Anomaly Monitoring by Magnetometer And Plasma-probe (IAMMAP) for the CAS500-3 Satellite  

Ryu, Kwangsun (Satellite Technology Research Center, KAIST)
Lee, Seunguk (Satellite Technology Research Center, KAIST)
Woo, Chang Ho (Satellite Technology Research Center, KAIST)
Lee, Junchan (Satellite Technology Research Center, KAIST)
Jang, Eunjin (Satellite Technology Research Center, KAIST)
Hwang, Jaemin (Satellite Technology Research Center, KAIST)
Kim, Jin-Kyu (Satellite Technology Research Center, KAIST)
Cha, Wonho (Satellite Technology Research Center, KAIST)
Kim, Dong-guk (Satellite Technology Research Center, KAIST)
Koo, BonJu (Satellite Technology Research Center, KAIST)
Park, SeongOg (Satellite Technology Research Center, KAIST)
Choi, Dooyoung (Department of Astronomy and Space Science, Chungbuk National University)
Choi, Cheong Rim (Department of Astronomy and Space Science, Chungbuk National University)
Publication Information
Journal of Astronomy and Space Sciences / v.39, no.3, 2022 , pp. 117-126 More about this Journal
Abstract
The Ionospheric Anomaly Monitoring by Magnetometer And Plasma-probe (IAMMAP) is one of the scientific instruments for the Compact Advanced Satellite 500-3 (CAS 500-3) which is planned to be launched by Korean Space Launch Vehicle in 2024. The main scientific objective of IAMMAP is to understand the complicated correlation between the equatorial electro-jet (EEJ) and the equatorial ionization anomaly (EIA) which play important roles in the dynamics of the ionospheric plasma in the dayside equator region. IAMMAP consists of an impedance probe (IP) for precise plasma measurement and magnetometers for EEJ current estimation. The designated sun-synchronous orbit along the quasi-meridional plane makes the instrument suitable for studying the EIA and EEJ. The newly-devised IP is expected to obtain the electron density of the ionosphere with unprecedented precision by measuring the upper-hybrid frequency (fUHR) of the ionospheric plasma, which is not affected by the satellite geometry, the spacecraft potential, or contamination unlike conventional Langmuir probes. A set of temperature-tolerant precision fluxgate magnetometers, called Adaptive In-phase MAGnetometer, is employed also for studying the complicated current system in the ionosphere and magnetosphere, which is particularly related with the EEJ caused by the potential difference along the zonal direction.
Keywords
ionosphere; impedance probe; magnetometer; equatorial electro-jet; equatorial ionization anomaly;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Alken P, Thebault E, Beggan CD, Amit H, Aubert J, et al., International Geomagnetic Reference Field: the thirteenth generation, Earth Planets Space. 73, 49 (2021). https://doi.org/10.1186/s40623-020-01288-x   DOI
2 Balmain K, The impedance of a short dipole antenna in a magneto-plasma, IEEE Trans. Antennas Propag. 12, 605-617 (1964).   DOI
3 Chapman S, The equatorial electrojet as detected from the abnormal electric current distribution above Huancayo, Peru, and elsewhere, Arch. Meteorol. Geophys. Bioklimatol. Ser. A. 4, 368-390 (1951).   DOI
4 Fang HK, Chen WH, Chen AB, Oyama KI, The effect of surface contamination of tiny satellite on DC probe ionosphere measurement, AIP Adv. 8, 105220 (2018).   DOI
5 Oyama KI, DC Langmuir probe for measurement of space plasma: a brief review, J. Astron. Space Sci. 32, 167-180 (2015).   DOI
6 Spencer E, Patra S, Ionosphere plasma electron parameters from radio frequency sweeping impedance probe measurements, Radio Sci. 50, 853-865 (2015).   DOI
7 Alken P, Maus S, Relationship between the ionospheric eastward electric field and the equatorial electrojet, Geophys. Res. Lett. 37, L04104 (2010). https://doi.org/10.1029/2009GL041989   DOI
8 Appleton EV, Two anomalies in the ionosphere, Nature. 157, 691 (1946).   DOI
9 Aso T, A sheath resonance observed by a high frequency impedance probe, J. Geomagn. Geoelectr. 25, 325-330 (1973).   DOI
10 Blackwell DD, Cothran CD, Walker DN, Tejero EM, Gatling GR, et al. Advances in impedance probe applications and design in the NRL space physics simulation chamber, IEEE Trans. Plasma. Sci. 43, 2649-2657 (2015).   DOI
11 Chandra H, Misra RK, Rastogi RG, Equatorial ionospheric drift and the electrojet, Planet. Space Sci. 19, 1497-1503 (1971).   DOI
12 Constantinescu OD, Auster HU, Delva M, Hillenmaier O, Magnes W, et al. Principal Component Gradiometer technique for removal of spacecraft-generated disturbances from magnetic field data. Geosci. Instrum. Methods Data Syst. 2020, 1-26 (2020). https://doi.org/10.5194/gi-2020-10   DOI
13 Evans DS, Maynard NC, Troim J, Jacobsen T, Egeland A, Auroral vector electric field and particle comparisons, 2, Electrodynamics of an arc, J. Geophys. Res. 82, 2235-2249 (1977). https://doi.org/10.1029/JA082i016p02235   DOI
14 Moffett RJ, Hanson WB, Effect of ionization transport on the equatorial F-region, Nature. 206, 705-706 (1965). https://doi.org/10.1038/206705a0   DOI
15 Lam MM, Freeman MP, Jackman CM, Rae IJ, Kalmoni NME, et al., How well can we estimate pedersen conductance from the THEMIS white-light all-sky cameras?, J. Geophys. Res. Space Phys. 124, 2920-2934 (2019).   DOI
16 Lastovicka J, On the role of solar and geomagnetic activity in longterm trends in the atmosphere-ionosphere system, J. Atmos. Sol.-Terr. Phys. 67, 83-92 (2005) https://doi.org/10.1016/j.jastp.2004.07.019   DOI
17 Macmillan S, Olsen N, Observatory data and the Swarm mission, Earth Planets Space 65, 15 (2013). https://doi.org/10.5047/eps.2013.07.011   DOI
18 Ryu K, Lee E, Chae J, Parrot M, Pulinets S. Seismo-ionospheric coupling appearing as equatorial electron density enhancements observed via DEMETER electron density measurements, J. Geophys. Res. Space Phys. 119, 8524-8542 (2014). https://doi.org/10.1002/2014JA020284   DOI
19 Ryu K, Lee J, Kim S, Chung T, Shin GH, et al. Characteristics of the plasma source for ground ionosphere simulation surveyed by disk-type langmuir probe, J. Astron. Space Sci. 34, 343-352 (2017).
20 Stolle C, Manoj C, Luhr H, Maus S, Alken P, Estimating the daytime equatorial ionization anomaly strength from electric field proxies, J. Geophys. Res. 113, A09310 (2008). https://doi.org/10.1029/2007JA012781   DOI
21 Wakabayashi M, Suzuki T, Uemoto J, Kumamoto A, Ono T, Impedance probe technique to detect the absolute number density of electrons on-board spacecraft, in An Introduction to Space Instrumentation, eds. Oyama K, Cheng CZ (Terrapub, Tokyo, 2013), 107-123.
22 Lebreton JP, Stverak S, Travnicek P, Maksimovic M, Klinge D, et al., The ISL Langmuir probe experiment processing onboard DEMETER: scientific objectives, description and first results, Planet. Space Sci. 54, 472-486 (2006). https://doi.org/10.1016/j.pss.2005.10.017   DOI
23 Yamazaki Y, Maute A, Sq and EEJ: a review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents, Space Sci. Rev. 206, 299-405 (2017).   DOI