• Title/Summary/Keyword: acute ozone

Search Result 18, Processing Time 0.031 seconds

Effects of Atmospheric Ozone on the Rice Blast Pathogen Pyricularia grisea

  • Hur, Jae-Seoun;Kim, Ki-Woo;Kim, Pan-Gi;Yun, Sung-Chul;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.16 no.1
    • /
    • pp.19-24
    • /
    • 2000
  • The direct effects of acute $\textrm{O}_3$ on the growth, sporulation and infection of Pyricularia grisea, rece blast pathogen, were investigated to understand the interactions between ozone and the pathogen. Acute exposure of 200 nl $\textrm{l}^{-1}$ ozone for 8 h significantly reduced conidia germination on water atar. Ozone exposure of 200 nl $\textrm{l}^{-1}$ for 8h per day for 5 days had no effect on increase in colony diameter, but severely damaged actively growing aerial mycelia. However, the damage to mycalia was recovered during the following 16 h exposure of unpolluted air. Conidial production was also stimulated by the acute ozone exposure for 5 days. The conidia exposed to the acute ozone for 5 days normally germinates but slightly reduce appressoria formation on rice leaf. However, the conidia produced by artificial stimulation under the same ozone concentration for 10 days showed significant reduction in appressorea for mation on a hydrophobic film. This study suggests that the acute ozone could ingibit appressoria formation as well as vegetative growth of the pathogen, resulting in decrease in rece blast development in the field during summer when high ozone episodes could occur occasionally.

  • PDF

Inhibitory Effects of Atmospheric Ozone on Magnaporthe grisea conidia

  • Hur, Jae-Seoun;Kim, Jung-Ah;Kim, Minjin;Koh, Young-Jin
    • The Plant Pathology Journal
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2002
  • Direct effects of atmospheric ozone on conidia of the rice blast pathogen, Magnaporthe grisea, were investigated to evaluate ozone-induced effects on infection potential of the rice blast fungus. Acute ozone exposure (200 nl $1^{-1}$, 8 h $day^{-1}$3 days) during sporulation significantly affected conidial morphology, appressorium formation, and disease development on rice loaves. Ozone caused reduction in conidial size and change in conidial shape. Relative cytoplasmic volume of lipids and vacuoles were increased in ozone-exposed conidia. Inhibition of appressorium formation and simultaneous increase in endogenous levee of polyamines were found in ozone-exposed conidia. The inverse relationship between appressorium formation and level of polyamines implies that ozone-mediated increase in intracellular level of polyamines may inhibit appressorium formation in rice blast fungus. Furthermore, rice plants inoculated with ozone-fumigated conidia exhibited less severe disease development than those with unfumigated conidia. This result suggests that the anti-conidial consequence of acute ozone will eventually weaken the rice blasts potential for multiple infection cycle. This further suggests that consequently, rice blast can be transformed from an explosive disease to one that has limited epidemiological potential in the field.

Tropospheric Ozone Patterns in the Metropolitan Seoul Area During 1990~1997 Using Two Ozone Indices of Accumulation over the Threshold Concentrations (한계농도 누적 오존지표로 본 1990~1997년의 수도권 오존농도 변화)

  • 윤성철;박은우;장영기
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.429-439
    • /
    • 1999
  • In order to assess the chronic impact of tropospheric ozone on vegetation in the Seoul metropolitan area, it is necessary to quantify ozone exposure. Two ozone indices commonly used to relate ozone exposure to injury of vegetation were calculated. SUM06(SUM of hourly concentrations at or above 0.06 ppm) and AOT40(Accumulated exposure Over a Threshold of 40 ppb) which are widely used as ozone indices in the US and Europe were calculated based on hourly ozone concentrations in 5 areas of Seoul and 5 cities of Kyunggido during 1990~1997. Most SUM06 levels were 1~5ppm.hr, however several areas in Northern and Eastern Seoul reached about 5~7 ppm.hr in 1996~1997. AOT40 values were as high as 17~24 ppm.hr. Although measured SUM06 levels would not be expected to significantly impact vegetation, the overall ozone index, as well as annual average, 95th, and 99th percentile have increased continuously over the last 8 years. Often, ozone concentrations are lower in cities where there is a significant NOx concentration, than in outlying rural agricultural areas where NOx scrubbing is not as important. Concentrations greater than 40 ppb, which can cause chronic ozone toxicity to vegetation, were found mostly in the summer and constitutued about 5~15% of total hourly ozone cocentrations.

  • PDF

Effect of topical ozonated sunflower oil on second intention wound healing in turtles: a randomised experimental study

  • Ginel, Pedro J.;Negrini, Joao;Guerra, Rafael;Lucena, Rosario;Ruiz-Campillo, Maria T.;Mozos, Elena
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.27.1-27.13
    • /
    • 2021
  • Background: Ozone is an antimicrobial agent that in experimental and case-control studies has been found to exert a positive effect on wound healing. Wild and pet chelonians frequently present insidious wounds exhibiting secondary infections and/or delayed healing. Objectives: Evaluate the effects of topical ozonated sunflower oil on second-intention healing of acute experimental skin wounds in red-eared sliders (Trachemys scripta elegans). Methods: Randomised within-subject controlled study; Group 1 (n = 24) was used to assess clinical healing features; Group 2 (n = 12) was used for histological evaluation in which two sets of wounds were biopsied at 2, 7, 14, 21, 28 and 42 days over the course of the cicatrisation process. A single 6 mm diameter wound was made on each rear limb and topical ozonated (950 peroxide value) and non-ozonated sunflower oil were applied daily for one week on treated and contralateral control wounds, respectively. Results: Mean wound size was significantly lower in the ozone-treated group at day 28 (p < 0.0001) with differences of clinical relevance (74.04% vs. 93.05% reduction of initial wound size). Histologically, the acute inflammatory reaction was enhanced in treated wounds, with significantly higher numbers of heterophils (p = 0.0016), lymphocytes (p < 0.001) and fibroblasts (p < 0.001). Conclusions: Daily topical application of ozonated sunflower oil over the course of one week improved the healing of acute, full-thickness skin wounds in chelonians. This clinical outcome was histologically correlated with an enhanced acute inflammatory reaction, as well as the production and remodelling of collagen fibres.

A Study of Ecotoxicity Test for Byproducts of Ozone in the Ballast Water Treatment System with Ozonation

  • Park, Sung-Jin;Ha, Shin-Young;Kim, In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.741-747
    • /
    • 2011
  • Ecological toxicity testing of the whole-effluent from the ozone ballast water treatment system was conducted as specified in the quality assurance project plans (QAPP). The growth inhibition test with microalgae, acute aquatic toxicity test with the Rotifer reproduction, toxicity test (or population growth) with the Rotifer, survival and growth toxicity test with larval fish and sediment toxicity test with amphipod were carried out to evaluate ecological toxicity on the movile test barge.

Variation of Indoor Average Ozone Concentration within the Radiation Therapy Room by High Energy Radiation (고 에너지 방사선에 기인된 방사선치료실 내 평균 오존 농도의 변화)

  • Lee, Jin-kook;Lee, Hyo-Yeong;Im, In-Chul;Yu, Yun-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.3
    • /
    • pp.171-180
    • /
    • 2016
  • This study was to evaluate the change in characteristics of concentration of ozone after exposure to high energy radiation in linac room. Background ozone concentration of linac room was measured and compared to ozone concentration around linac room. Background ozone concentration of linac room was mean $17.4{\pm}7.9ppb$. It was 50% of the ozone concentration($36.8{\pm}22.3ppb$) around linac room(p<0.05). The concentration of ozone after exposure to high energy radiation in linac room was elevated to double of background ozone level, intensity after exposure. with exposure time concentration of ozone increased proportionally. It showed maximum level at 130~180seconds and slowed a tendency to saturate. It required more than 10 minutes for ozone concentration in linac room to drop to ozone concentration around linac room. The concentration of ozone after exposure to high energy radiation is high enough to cause specific physical symptoms, such as acute dyspnea or chest pain due to dry cough. Exposure to high concentration of ozone in sealed linac room can aggravate pulmonary disease, so special attention is needed.

A Study on the Influence on Medical Care for the Elderly by Exposure to Fine Particulate Matter and Ozone (미세먼지와 오존노출에 의한 노인의 의료 이용 영향에 대한 연구)

  • Jung, En-Joo;Na, Wonwoong;Lee, Kyung-Eun;Jang, Jae-Yeon
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.1
    • /
    • pp.30-41
    • /
    • 2019
  • Objectives: The effects of particulate matter and ozone on health are being reported in a number of studies. These effects are likely to be stronger on the elderly population, but studies in this regard are scarce. The purpose of this study was to examine the effects of particulate matter ${\leq}2.5{\mu}m$ and ozone on the acute health status of the elderly population. Methods: In order to analyze the health status of the elderly population, the NHIS-Senior Cohort data was used. In this study of people 60 years or older in Seoul, the number of outpatient visits and ER visits between 2002 and 2013 were calculated. Each disorder and the lag effect were analyzed separately. Particulate matter and ozone were analyzed using both the single exposure model and the adjusted multi-exposure model. Results: In the single exposure analysis with PM2.5 as the exposure variable, with each increase of $10{\mu}g/m^3$, the number of outpatient visits increased by 1.0081 times, vascular disease 1.0065 times, chronic pulmonary disease 1.0086 times, and diabetes 1.0055 times. In the multi-exposure model adjusting for ozone, the number of outpatient visits increased by 1.0066 times. There was a one-day lag effect and 1.0066 times increase between PM2.5 and ER visits in the multi-exposure model and 1.0057 times when adjusted for ozone (p value <0.10). There was a one-day lag effect in all multi-exposure models with ozone as the main variable, and when the particulate matter was adjusted, there was a one-day delay and 1.0143 times increase in ER visits. Conclusions: In our study, an increase in the number of outpatient and ER visits in the elderly population in accordance with the increase in PM2.5 and ozone was found. The association found in our study could also produce a socioeconomic burden. Future studies need to be performed in regards to younger populations and other air pollutants.

Interference of Sulphur Dioxide on Balloon-borne Electrochemical Concentration Cell Ozone Sensors over the Mexico City Metropolitan Area

  • Kanda, Isao;Basaldud, Roberto;Horikoshi, Nobuji;Okazaki, Yukiyo;Benitez-Garcia, Sandy-Edith;Ortinez, Abraham;Benitez, Victor Ramos;Cardenas, Beatriz;Wakamatsu, Shinji
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.162-174
    • /
    • 2014
  • An abnormal decrease in ozonesonde sensor signal occurred during air-pollution study campaigns in November 2011 and March 2012 in Mexico City Metropolitan Area (MCMA). Sharp drops in sensor signal around 5 km above sea level and above were observed in November 2011, and a reduction of signal over a broad range of altitude was observed in the convective boundary layer in March 2012. Circumstantial evidence indicated that $SO_2$ gas interfered with the electrochemical concentration cell (ECC) ozone sensors in the ozonesonde and that this interference was the cause of the reduced sensor signal output. The sharp drops in November 2011 were attributed to the $SO_2$ plume from Popocat$\acute{e}$petl volcano southeast of MCMA. Experiments on the response of the ECC sensor to representative atmospheric trace gases showed that only $SO_2$ could cause the observed abrupt drops in sensor signal. The vertical profile of the plume reproduced by a Lagrangian particle diffusion simulation supported this finding. A near-ground reduction in the sensor signal in March 2012 was attributed to an $SO_2$ plume from the Tula industrial complex north-west of MCMA. Before and at the time of ozonesonde launch, intermittent high $SO_2$ concentrations were recorded at ground-level monitoring stations north of MCMA. The difference between the $O_3$ concentration measured by the ozonesonde and that recorded by a UV-based $O_3$ monitor was consistent with the $SO_2$ concentration recorded by a UV-based monitor on the ground. The vertical profiles of the plumes estimated by Lagrangian particle diffusion simulation agreed fairly well with the observed profile. Statistical analysis of the wind field in MCMA revealed that the effect Popocat$\acute{e}$petl was most likely to have occurred from June to October, whereas the effect of the industries north of MCMA, including the Tula complex, was predicted to occur throughout the year.

Acute Toxicity of Ozone on Survival and Physiological Conditions of Olive Flounder, Paralichthys Olivaceus (넙치(Paralichthys olivaceus)의 생존과 생리상태에 미치는 오존의 급성 독성)

  • Kim, Heung-Yun;Oh, Myung-Joo;Jung, Sung-Ju
    • Journal of fish pathology
    • /
    • v.12 no.1
    • /
    • pp.32-41
    • /
    • 1999
  • Ozonization for rearing seawater in land-based culture system has recently been utilized for disinfection of pathogenic microorganisms and improvement of water quality. This study was conducted to examine the effects of total residual oxidants (TRO) in ozone-treated seawater on survival, blood parameters, osmolality and oxygen consumption, and gill tissue of the flounder. Paralichthys olivaceus. Experiments were carried out with the starved flounder of 12~19 cm in total length at $20^{\circ}C$. The 48-hr and 96-hr $LC_{50}$ for the flounder amounts to 26.4 ppb and 22.3 ppb, respectively. With increase of TRO concentration from 24 to 39 ppb, the values of hematocrit, hemoglobin concentration, red blood cell count and osmolality of the flounder with respect to exposure time were significantly elevated, however, the oxygen consumption rates decreased. In the case of the fish exposed to 13 ppb for 96 hrs, blood glucose increased with an elapse of exposure time, while survival rate was 100%. Death apparently resulted by massive destruction of gill lamellar epithelium, severe osmotic imbalance and the lack of oxygen uptake. The results of this experiment indicated that to protect aquaculture organisms, the ozone-treated seawater should not contain any residual oxidants, and that relatively long-term exposure to TRO of low concentration can impact on survival and physiological conditions of the flounder.

  • PDF

An Application of Toxicity Test to Water Management and Water Treatment (수질관리와 수처리에의 독성시험의 응용)

  • Kim, Berm-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.639-646
    • /
    • 2005
  • In this research, we tried to develop the application method to water management and treatment using toxicity test method. When we measure the toxicity of environmental samples, we have to decide whether we take some countermeasures to reduce the toxicity or not. The first issue is how to set these action levels in each bioassays. A new idea was attempted to authorize indirect approach of each bioassays through the response characteristics against mixture of chemicals in water quality standard. The significant response in the cell-growth-inhibition bioassay was detected for standards-mixture(STDs). For acute toxicity assay, STDs-based implicit correlation between risks to humans and bioassay data showed a rational approach to set action levels in practical management. A simple model was proposed to describe and predict the changes in the total toxicity based on the concentrations of toxic-controlling chemicals during the ozonation of landfill leachates. On the basis of this simple model, toxicity reduction was predicted for pre-aggregation treatment before ozonation and ozone concentration during the ozonation. The method proposed in this study would be useful in optimizing water treatment processes and their running conditions in terms of the toxicity reduction efficacy.