Browse > Article
http://dx.doi.org/10.7742/jksr.2016.10.3.171

Variation of Indoor Average Ozone Concentration within the Radiation Therapy Room by High Energy Radiation  

Lee, Jin-kook (Department of Biomedical Health Science, Graduate School of Dongeui University)
Lee, Hyo-Yeong (Department of Radiological Science, Dongeui University)
Im, In-Chul (Department of Radiological Science, Dongeui University)
Yu, Yun-Sik (Department of Radiological Science, Dongeui University)
Publication Information
Journal of the Korean Society of Radiology / v.10, no.3, 2016 , pp. 171-180 More about this Journal
Abstract
This study was to evaluate the change in characteristics of concentration of ozone after exposure to high energy radiation in linac room. Background ozone concentration of linac room was measured and compared to ozone concentration around linac room. Background ozone concentration of linac room was mean $17.4{\pm}7.9ppb$. It was 50% of the ozone concentration($36.8{\pm}22.3ppb$) around linac room(p<0.05). The concentration of ozone after exposure to high energy radiation in linac room was elevated to double of background ozone level, intensity after exposure. with exposure time concentration of ozone increased proportionally. It showed maximum level at 130~180seconds and slowed a tendency to saturate. It required more than 10 minutes for ozone concentration in linac room to drop to ozone concentration around linac room. The concentration of ozone after exposure to high energy radiation is high enough to cause specific physical symptoms, such as acute dyspnea or chest pain due to dry cough. Exposure to high concentration of ozone in sealed linac room can aggravate pulmonary disease, so special attention is needed.
Keywords
High energy radiation; Radiation therapy room; Indoor ozone concentration; Ambient air ozone concentration;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 K. Kubesch, R. Zona, S. Solar, P. Gehringer, "Degradation of catechol by ionizing radiation, ozone and the combined process ozone-electron-beam", Radiat. Phys. Chem., Vol. 72, No. 4, pp. 447-453, 2005.   DOI
2 NCRP Report No. 51, "Radiation protection design guidelines for 0.1-100 MeV particle accelerator facilities", Washington D.C., National Council on Radiation Protection and Measurements, 1977.
3 NCRP Report No. 49, "Structural shielding design and evaluation for medical use of X-rays and gamma rays of energies up to 10 MeV", Washington D.C., National Council on Radiation Protection and Measurements, 1976.
4 NCRP Report No. 144, "Radiation protection for particle accelerator facilities", Washington D.C., National Council on Radiation Protection and Measurements, 2003.
5 NCRP Report No. 151, "Structural shielding design and evaluation for Mega-voltage X-rays and gamma-ray radiotherapy facilities", Washington D.C., National Council on Radiation Protection and Measurements, 2005.
6 IAEA Safety Series No. 115, "International basic safety standards for protection against ionizing radiation and for the safety of radiation sources", Vienna, International Atomic Energy Agency, 1996.
7 IAEA Safety Reports Series No. 47, "Radiation protection in the design of radiotherapy facilities", Vienna, International Atomic Energy Agency, 2006.
8 M. Cortez-Lugo, A. Mercado-Garcia, M. Hernandez-Avila, F. Meneses-Gonzalez, E. Palazuelos-Rendon, " Evaluation of the indoor and outdoor air quality in anursery school in Mexico City", Salud. Publica. Mex., Vol. 40, No. 5, pp. 415-420, 1998.   DOI
9 M. A. Kim, Y. D. Kwon, J. Y. Je, "A study on the Interior Structure and Scattered Radiation Measurement of Radiotherapy Room," Journal of the Korean Society Radiology, Vol. 6, No. 3, pp. 191-195, 2012.   DOI
10 Y. K. Kwak, I. K. Yoon, J. H. Lee, S. H. Yoo, "Consideration about ozone generation in the treatment room while treating a patient", Journal of the Korean Society Radiation Therapy, Vol. 21, No. 2, pp. 75-82, 2009.
11 A. Wisthaler, C. J. Weschler, "Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air", Proc. Natl. Academy SCI USA, Vol. 107, No. 15, pp. 6568-6575, 2010.   DOI
12 B. J. Finlayson-Pitts, N. Pitts, "VOCs, NOx and ozone production", Journal of the Air Waste Management Association, Vol. 43, No. 8, pp. 1093-1101, 1993.
13 K. Movassaghi, M. V. Russo, P. Avino, "The determination and role of peroxyacetil nitrate in photochemical processes in atmosphere", Journal of the Chemical Cent, Vol. 6, No. 2, pp. S8, 2012.   DOI
14 M. Amann, "Health risks of ozone from long-range transboundary air pollution", Copenhagen, WHO Regional Office Europe, pp. 30-31, 2008.
15 E. W. Triche, J. F. Gent, T. R. Holford, K. Belanger, M. B. Bracken, W. S. Beckett, L. Naeher, J. E. McSharry, B. P. Leaderer, "Low-level ozone exposure and respiratory symptoms in infants", Environ. Health Perspect, Vol. 114, NO. 6, pp. 911-916, 2006.   DOI
16 L. L. Chen, I. B. Tager, D. B. Peden, D. L. Christian, R. E. Ferrando, B. S. Welch, J. R. Balmes, "Effect of ozone exposure on airway responses to inhaled allergen in asthmatic subjects", Chest, Vol. 125, No. 6, pp. 2328-2335, 2004.   DOI
17 C. He., L. Morawska, L. Taplin, "Particle emission characteristics of office printers", Environ SCI Technology, Vol. 41, No. 17, pp. 6039-6045, 2007.   DOI
18 W. C. Adams, "Comparison of chamber and face-mask 6.6-hour exposures to ozone on pulmonary function and symptoms responses", Journal of the Inhalation Toxicology, Vol. 14, No. 7, pp. 745-764, 2002.   DOI
19 L. Pieri, M. Vignudelli, F. Bartolucci, F. Salvatorelli, C. Di Michele, N. Tavano, P. Rossi, G. Dinelli, "Integrated environmental quality monitoring around an underground methane storage station", Chemosphere, Vol. 131, pp. 130-138, 2015.   DOI
20 W. D. Bennett, M. J. Hazucha, L. J. Folinsbee, P. A. Bromberg, G. E. Kissling, S. J. London, "Acute pulmonary function response to ozone in young adults as a function of body mass index", Journal of the Inhalation Toxicology, Vol. 19, No. 14, pp. 1147-1154, 2007.   DOI
21 A. H. Schultheis, D. J. Bassett, A. D. Fryer, "Ozone-induced airway hyperresponsiveness and loss of neuronal M2 muscarinic receptor function", Vol. 76, No. 3, pp. 1088-1097, 1994.   DOI
22 W. F. McDonnell, P. W. Stewart, M. V. Smith, "Prediction of ozone-induced lung function responses in humans", Journal of the Inhalation Toxicology, Vol. 22, No. 2, pp. 160-168 (2010).   DOI
23 K. Fuwa, B. L. Valle, "The Physical Basis of Analytical Atomic Absorption Spectrometry. The Pertinence of the Beer-Lambert Law", Journal of the Analytical Chemistry, Vol. 35, No. 8, pp. 942-946, 1963.   DOI
24 http://air.daegu.go.kr/html/board/boardList.jsp?boardCode=data1.
25 T. Tanaka, Y. Morino, "Coriolis interaction and anharmonic potential function of ozone from the microwave spectra in the excited vibrational states," Journal of Molecular Spectroscopy, Vol. 33, No. 3, pp. 538-551, 1970.   DOI
26 K. M. Mack, J. S. Muente, "Stark and Zeeman properties of ozone from molecular beam spectroscopy", Journal of the Chemical Physics, Vol. 66, pp. 5278-5283, 1977.   DOI